Skip to main content

Advertisement

Log in

Hypolipidemic activity of Symplocos cochinchinensis S. Moore leaves in hyperlipidemic rats

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The hypolipidemic activity of Symplocos cochinchinensis S. Moore leaves was studied in Triton WR-1339- and high fat diet-induced hyperlipidemic rats. In Triton WR-1339-induced hyperlipidemic rats, the hexane extract (250 and 500 mg/kg) exerted a significant (P < 0.01) lipid-lowering effect compared to ethyl acetate and methanol extracts, as assessed by the reversal of the plasma levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). In high fat diet-fed hyperlipidemic rats, the hexane extract (250 and 500 mg/kg) caused the lowering of lipid levels in the plasma and liver. The hypolipidemic activity of S. cochinchinensis leaves was compared with fenofibrate, a known lipid-lowering drug, in both models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yokozawa T, Ishida A, Cho EJ, Nakagawa T (2003) The effects of Coptidis rhizoma extract on a hypercholesterolemic animal model. Phytomedicine 10:17–22

    Article  PubMed  CAS  Google Scholar 

  2. Farias RAF, Neto MFO, Viana GSB, Rao VSN (1996) Effects of Croton cajucara extract on serum lipids of rats fed a high fat diet. Phytother Res 10:697–699

    Article  Google Scholar 

  3. Chattopadhyaya R, Pathak D, Jindal DP (1996) Antihyperlipidemic agents. A review. Ind Drugs 33:85–98

    CAS  Google Scholar 

  4. Buenz EJ, Johnson HE, Beekman EM, Motley TJ, Bauer BA (2005) Bioprospecting Rumphius’s Ambonese Herbal herbal: volume I. J Ethnopharmacol 96:57–70

    Article  PubMed  CAS  Google Scholar 

  5. Ali M, Bhutani KK, Srivastava TN (1990) Triterpenoids from Symplocos racemosa bark. Phytochemistry 29:3601–3604

    Article  CAS  Google Scholar 

  6. Ved DK, Goraya GS (2007) Demand and supply of medicinal plants in India. National Medicinal Plants Board/Foundation for Revitalisation of Local Health Traditions (FRLHT), New Delhi

    Google Scholar 

  7. Ishida J, Wang HK, Oyama M, Cosentino ML, Hu CQ, Lee KH (2001) Anti-AIDS agents. 46. Anti-HIV activity of Harman, an anti-HIV principle from Symplocos setchuensis, and its derivatives. J Nat Prod 64:958–960

    Article  PubMed  CAS  Google Scholar 

  8. Ahmad VU, Abbasi MA, Hussain H, Akhtar MN, Farooq U, Fatima N, Choudhary MI (2003) Phenolic glycosides from Symplocos racemosa: natural inhibitors of phosphodiesterase I. Phytochemistry 63:217–220

    Article  PubMed  CAS  Google Scholar 

  9. Khan MR, Kihara M, Omoloso AD (2001) Antimicrobial activity of Symplocos cochinensis. Fitoterapia 72:825–828

    Article  PubMed  CAS  Google Scholar 

  10. Vadivu R, Lakshmi KS (2008) In vitro and in vivo anti-inflammatory activity of leaves of Symplocos cochinchinensis (Lour) Moore ssp laurina. Bangladesh J Pharmacol 3:121–124

    Google Scholar 

  11. Li XH, Shen DD, Li N, Yu SS (2003) Bioactive terpenoids from Symplocos chinensis. Asian Nat Prod Res 5:49–56

    Article  CAS  Google Scholar 

  12. Abbasi MA (2004) Bioactive chemical constituents of Symplocos recemosa and Comiphor amukul. PhD thesis submitted to University of Karachi, Pakistan

  13. Lee KM (2001) Overview of drug product development. Curr Protoc Pharmacol 7:1–10

    CAS  Google Scholar 

  14. Roux S, Sablé E, Porsolt RD (2004) Primary observation (Irwin) test in rodents for assessing acute toxicity of a test agent and its effects on behavior and physiological function. Curr Protoc Pharmacol 10:1–23

    Google Scholar 

  15. Oliveira HC, dos Santos MP, Grigulo R, Lima LL, Martins DTO, Lima JCS, Stoppiglia LF, Lopes CF, Kawashita NH (2008) Antidiabetic activity of Vatairea macrocarpa extract in rats. J Ethnopharmacol 115:515–519

    Article  PubMed  Google Scholar 

  16. Levine S, Saltzman A (2007) A procedure for inducing sustained hyperlipemia in rats by administration of a surfactant. J Pharmacol Toxicol Methods 55:224–226

    Article  PubMed  CAS  Google Scholar 

  17. Harnafi H, Bouanani Nel H, Aziz M, Serghini Caid H, Ghalim N, Amrani S (2007) The hypolipidaemic activity of aqueous Erica multiflora flowers extract in Triton WR-1339 induced hyperlipidaemic rats: a comparison with fenofibrate. J Ethnopharmacol 109:156–160

    Article  PubMed  CAS  Google Scholar 

  18. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  19. Guido S, Joseph T (1992) Effect of chemically different calcium antagonists on lipid profile in rats fed on a high fat diet. Indian J Exp Biol 30:292–294

    PubMed  CAS  Google Scholar 

  20. Ye J-C, Chang W-C, Hsieh DJ-Y, Hsiao M-W (2010) Extraction and analysis of β-sitosterol in herbal medicines. J Med Plants Res 7:522–527

    Google Scholar 

  21. Schurr PE, Schultz JR, Parkinson TM (1972) Triton induced hyperlipidemia in rats as an animal model for screening hypolipidemic drugs. Lipids 7:68–74

    Article  PubMed  CAS  Google Scholar 

  22. Zeniya M, Reuben A (1988) Triton WR-1339-induced changes in serum lipids and biliary lipid secretion. Am J Physiol Gastrointest Liver Physiol 254:G346–G354

    CAS  Google Scholar 

  23. Friedman M, Bayer SO (1957) The mechanism underlying hypocholesterolemia induced by Triton WR 1339. Am J Physiol 190:439–445

    PubMed  CAS  Google Scholar 

  24. Patil UK, Saraf S, Dixit VK (2004) Hypolipidemic activity of seeds of Cassia tora Linn. J Ethnopharmacol 90:249–252

    Article  PubMed  Google Scholar 

  25. Khanna AK, Rizvi F, Chander R (2002) Lipid lowering activity of Phyllanthus niruri in hyperlipemic rats. J Ethnopharmacol 82:19–22

    Article  PubMed  CAS  Google Scholar 

  26. Anila L, Vijayalakshmi NR (2002) Flavonoids from Emblica officinalis and Mangifera indica-effectiveness for dyslipidemia. J Ethnopharmacol 79:81–87

    Article  PubMed  CAS  Google Scholar 

  27. Sudheesh S, Presannakumar G, Vijayakumar S, Vijayalakshmi NR (1997) Hypolipidemic effect of flavonoids from Solanum melongena. Plant Foods Hum Nutr 51:321–330

    Article  PubMed  CAS  Google Scholar 

  28. Hokanson JE, Austin MA (1996) Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 3:213–219

    Article  PubMed  CAS  Google Scholar 

  29. Pérez C, Canal JR, Campillo JE, Romero A, Torres MD (1999) Hypotriglyceridaemic activity of Ficus carica leaves in experimental hypertriglyceridaemic rats. Phytother Res 13:188–191

    Article  PubMed  Google Scholar 

  30. Xie W, Wang W, Su H, Xing D, Cai G, Du L (2007) Hypolipidemic mechanisms of Ananas comosus L. leaves in mice: different from fibrates but similar to statins. J Pharmacol Sci 103:267–274

    Article  PubMed  CAS  Google Scholar 

  31. Lees AM, Mok HYI, Lees RS, McCluskey MA, Grundy SM (1977) Plant sterols as cholesterol-lowering agents: clinical trials in patients with hypercholesterolemia and studies of sterol balance. Atherosclerosis 28:325–338

    Article  PubMed  CAS  Google Scholar 

  32. Mattson FH, Grundy SM, Crouse JR (1982) Optimizing the effect of plant sterols on cholesterol absorption in man. Am J Clin Nutr 35:697–700

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Entomology Research Institute, Chennai, India, for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savarimuthu Ignacimuthu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunil, C., Ignacimuthu, S. & Kumarappan, C. Hypolipidemic activity of Symplocos cochinchinensis S. Moore leaves in hyperlipidemic rats. J Nat Med 66, 32–38 (2012). https://doi.org/10.1007/s11418-011-0548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0548-4

Keywords

Navigation