Skip to main content
Log in

Vascular relaxation induced by aqueous extract of Lespedeza cuneata via the NO-cGMP pathway

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The aqueous extract of Lespedeza cuneata G. Don. (ALC) induced vasorelaxation of phenylephrine precontracted aorta in a dose-dependent manner. This effect disappeared in the absence of functional endothelium. Pretreatment of the aortic tissues with NG-nitro-l-arginine methyl ester (l-NAME), or 1H-[1,2,4]-oxadiazole-[4,3-α]-quinoxalin-1-one (ODQ) blocked ALC-induced vascular relaxation. Incubation of endothelium-intact thoracic aortic rings with ALC increased cGMP production. ALC-induced cGMP production was blocked by pretreatment with l-NAME or ODQ. ALC-induced vascular relaxation was also markedly attenuated by addition of verapamil or diltiazem, but was not blocked by pretreatment with indomethacine, glibenclamide, tetraethylammonium, atropine, or propranolol. The results suggest that ALC dilates vascular smooth muscle via endothelium-dependent NO-cGMP signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luscher TF, Vanhoutte PM (1986) Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8:344–348

    PubMed  CAS  Google Scholar 

  2. Vallance P, Collier J, Moncada S (1989) Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2(8670):997–1000

    Article  PubMed  CAS  Google Scholar 

  3. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  4. Jaffe EA (1985) Physiologic functions of normal endothelial cells. Ann NY Acad Sci 454:279–291

    Article  PubMed  CAS  Google Scholar 

  5. Beny JL, Brunet PC (1988) Neither nitric oxide nor nitroglycerin accounts for all the characteristics of endothelially mediated vasodilatation of pig coronary arteries. Blood Vessels 25:308–311

    PubMed  CAS  Google Scholar 

  6. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666

    Article  PubMed  CAS  Google Scholar 

  7. Hirano S, Agata N, Hara Y, Iguchi H, Shirai M, Tone H, Urakawa N (1991) Pirarubicin-induced endothelium-dependent relaxation in rat isolated aorta. J Pharm Pharmacol 43:848–854

    Article  PubMed  CAS  Google Scholar 

  8. Sato K, Ozaki H, Karaki H (1988) Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura 2. J Pharmacol Exp Ther 246:294–300

    PubMed  CAS  Google Scholar 

  9. Chiou WF, Chang PC, Chou CJ, Chen CF (2000) Protein constituent contributes to the hypotensive and vasorelaxant activities of Cordyceps sinensis. Life Sci 66:1369–1376

    Article  PubMed  CAS  Google Scholar 

  10. Kim SH, Kang KW, Kim KW, Kim ND (2000) Procyanidins in crataegus extract evoke endothelium-dependent vasorelaxation in rat aorta. Life Sci 67:121–131

    Article  PubMed  CAS  Google Scholar 

  11. Xie YW, Ming DS, Xu HX, Dong H, But PPH (2000) Vasorelaxing effects of Caesalpinia sappan involvement of endogenous nitric oxide. Life Sci 67:1913–1918

    Article  PubMed  CAS  Google Scholar 

  12. Goto H, Sakakibara I, Shimada Y, Kasahara Y, Terasawa K (2000) Vasodilator effect of extract prepared from Uncariae ramulus on isolated rat aorta. Am J Chin Med 28:197–203

    Article  PubMed  CAS  Google Scholar 

  13. Tanner MA, Bu X, Steimle JA, Myers PR (1999) The direct release of nitric oxide by gypenosides derived from the herb Gynostemma pentaphyllum. Nitric Oxide 3:359–365

    Article  PubMed  CAS  Google Scholar 

  14. Burnett AL (1995) Role of nitric oxide in the physiology of erection. Biol Reprod 52:485–489

    Article  PubMed  CAS  Google Scholar 

  15. Deng F, Chang J, Zhang J (2007) New flavonoids and other constituents from Lespedeza cuneata. J Asian Nat Prod Res 9:655–658

    Article  PubMed  CAS  Google Scholar 

  16. Kim SZ, Kim SH, Park JK, Koh GY, Cho KW (1998) Presence and biological activity of C-type natriuretic peptide-dependent guanylate cyclase-coupled receptor in the penile corpus cavernosum. J Urol 159:1741–1746

    Article  PubMed  CAS  Google Scholar 

  17. Murad F (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78:1–5

    Article  PubMed  CAS  Google Scholar 

  18. Loeb AL Jr, Izzo NJ, Johnson RM, Garrison JC, Peach MJ (1998) Endothelium-derived relaxing factor release associated with increased endothelial cell inositol trisphosphate and intracellular calcium. Am J Cardiol 62:36G–40G

    Article  Google Scholar 

  19. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT (1989) Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245:177–180

    Article  PubMed  CAS  Google Scholar 

  20. Gordon JL, Martin W (1983) Stimulation of endothelial prostacyclin production plays no role in endothelium-dependent relaxation of the pig aorta. Br J Pharmacol 80:179–186

    PubMed  CAS  Google Scholar 

  21. Busse R, Fleming I (1996) Endothelial dysfunction in atherosclerosis. J Vasc Res 33:181–194

    Article  PubMed  CAS  Google Scholar 

  22. Torok J (2008) Participation of nitric oxide in different models of experimental hypertension. Physiol Res 57:813–825

    PubMed  CAS  Google Scholar 

  23. Kang DG, Hur TY, Lee GM, Oh H, Kwon TO, Sohn EJ, Lee HS (2002) Effects of Cudrania tricuspidata water extract on blood pressure and renal functions in NO-dependent hypertension. Life Sci 70:2599–2609

    Article  PubMed  CAS  Google Scholar 

  24. Kang DG, Oh H, Cho DK, Kwon EK, Han JH, Lee HS (2002) Effects of bulb of Fritillaria ussuriensis maxim on angiotensin converting enzyme and vascular release of NO/cGMP in rats. J Ethnopharmacol 81:49–55

    Article  PubMed  Google Scholar 

  25. Kang DG, Lee JK, Choi DH, Sohn EJ, Moon MK, Lee HS (2005) Vascular relaxation by the methanol extract of Sorbus cortex via NO-cGMP pathway. Biol Pharm Bull 28:860–864

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) (No. 2010-0029465).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae Gill Kang or Ho-Sub Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.K., Kang, D.G. & Lee, HS. Vascular relaxation induced by aqueous extract of Lespedeza cuneata via the NO-cGMP pathway. J Nat Med 66, 17–24 (2012). https://doi.org/10.1007/s11418-011-0546-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0546-6

Keywords

Navigation