Journal of Natural Medicines

, Volume 65, Issue 3–4, pp 670–674 | Cite as

In vitro screening for antihyperlipidemic activities in foodstuffs by evaluating lipoprotein profiles secreted from human hepatoma cells

  • Jyunichiro Takahashi
  • Gen Toshima
  • Yukie Matsumoto
  • Fumiko Kimura
  • Takanobu Kiuchi
  • Kentaro Hamada
  • Keishi Hata
Natural Resource Letter


We screened the antihyperlipidemic effects of seven edible plants by evaluation of the triglyceride (TG) and cholesterol profiles secreted from HepG2 cells. We found that the water- and ethanol-extracts of Brasenia schreberi at 100 μg/ml exhibited strong inhibitory activities against TG and cholesterol secretions from HepG2 cells stimulated with sodium oleate. Real-time RT-PCR analysis demonstrated that ethanol extract of B. schreberi (BSET) attenuated the expression of the sterol regulatory element binding protein-1c and -2, fatty acid synthase and HMG CoA synthase-1 genes, which are involved in lipid synthesis in hepatocyte/hepatoma cells. Furthermore, we studied the action of BSET on adipose tissue accumulation and serum parameters in mice fed a high-fat diet (HFD). BSET suppressed mesenteric and epididymal adipose tissue accumulation and normalized serum TG and glucose, but not cholesterol levels in HFD-fed mice.


HepG2 cell Lipoprotein profile Triglyceride Cholesterol Antihyperlipidemic activity Brasenia schreberi 

Supplementary material

11418_2011_542_MOESM1_ESM.doc (74 kb)
Supplementary table (DOC 74 kb)


  1. 1.
    Kohno M, Hirotsuka M, Kito M, Matsuzawa Y (2006) Decreases in serum triacylglycerol and visceral fat mediated by dietary soybean beta-conglycinin. J Atheroscler Thromb 13:247–255PubMedCrossRefGoogle Scholar
  2. 2.
    Matsumoto K, Yokoyama SI, Gato N (2010) Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice. Phytother Res 24:205–210PubMedGoogle Scholar
  3. 3.
    Deushi M, Nomura M, Kawakami A, Haraguchi M, Ito M, Okazaki M, Ishii H, Yoshida M (2007) Ezetimibe improves liver steatosis and insulin resistance in obese rat model of metabolic syndrome. FEBS Lett 581:5667–5670CrossRefGoogle Scholar
  4. 4.
    Itoh M, Abe Y, Iwama Y, Kimura F, Satoh M, Shoji M, Takahashi J, Toshima G, Sasaki H, Hiwatashi K, Hata K (2009) HPLC analysis of lipoprotein in culture medium of hepatoma cells: an in vitro system for screening antihyperlipidemic drugs. Biotechnol Lett 31:953–957PubMedCrossRefGoogle Scholar
  5. 5.
    Itoh M, Hiwatashi K, Abe Y, Kimura F, Toshima G, Takahashi J, Sasaki H, Hata K (2009) Lupeol reduces triglyceride and cholesterol synthesis in human hepatoma cells. Phytochem Lett 2:176–178CrossRefGoogle Scholar
  6. 6.
    Ohtomo M, Takashima A, Kikuchi T, Takahashi J, Toeda K, Hata K (2011) Effects of rice bran fermented extract on lipid metabolism in high-fat diet fed rats. Yakugaku Zasshi 65:33–38Google Scholar
  7. 7.
    Usui S, Hara Y, Hosaki S, Okazaki M (2002) A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J Lipid Res 43:805–814PubMedGoogle Scholar
  8. 8.
    Okazaki M, Usui S, Ishigami M, Sakai N, Nakamura T, Matsuzawa Y, Yamashita S (2005) Identification of unique lipoprotein subclasses for visceral obesity by component analysis of cholesterol profile in high-performance liquid chromatography. Arterioscler Thromb Vasc Biol 25:578–584PubMedCrossRefGoogle Scholar
  9. 9.
    Wong SH, Fisher EA, Marsh JB (1989) Effects of eicosapentaenoic and docosahexaenoic acids on apoprotein B mRNA and secretion of very low density lipoprotein in HepG2 cells. Arteriosclerosis 9:836–841PubMedGoogle Scholar
  10. 10.
    Mahley RW, Innerarity TL, Rall SC Jr, Weisgraber KH (1984) Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res 25:1277–1294PubMedGoogle Scholar
  11. 11.
    Segrest JP, Jones MK, De Loof H, Dashti N (2001) Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 42:1346–1367PubMedGoogle Scholar
  12. 12.
    Olofsson SO, Wiklund O, Boren J (2007) Apolipoproteins A-I and B: biosynthesis, role in the development of atherosclerosis and targets for intervention against cardiovascular disease. Vasc Health Risk Manag 3:491–502PubMedGoogle Scholar
  13. 13.
    Hussain MM, Shi J, Dreizen P (2003) Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 44:22–32PubMedCrossRefGoogle Scholar
  14. 14.
    Chandler CE, Wilder DE, Pettini JL, Savoy YE, Petras SF, Chang G, Vincent J, Harwood HJ Jr (2003) CP-346086 an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and in humans. J Lipid Res 44:1887–1901PubMedCrossRefGoogle Scholar
  15. 15.
    Casaschi A, Maiyoh GK, Rubio BK, Li RW, Adeli K, Theriault AG (2004) The chalcone xanthohumol inhibits triglyceride and apolipoprotein B secretion in HepG2 cells. J Nutr 134:1340–1346PubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2011

Authors and Affiliations

  • Jyunichiro Takahashi
    • 1
  • Gen Toshima
    • 1
  • Yukie Matsumoto
    • 1
  • Fumiko Kimura
    • 1
  • Takanobu Kiuchi
    • 2
  • Kentaro Hamada
    • 2
  • Keishi Hata
    • 3
  1. 1.Skylight BiotechAkitaJapan
  2. 2.HarvestechAkitaJapan
  3. 3.Akita Research Institute for Food and Brewing (ARIF)AkitaJapan

Personalised recommendations