Skip to main content

Advertisement

Log in

Adaptogenic potential of curcumin in experimental chronic stress and chronic unpredictable stress-induced memory deficits and alterations in functional homeostasis

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The present study was designed to investigate the role of curcumin in chronic stress and chronic unpredictable stress-induced memory deficits and alteration of functional homeostasis in mice. Chronic stress was induced by immobilizing the animal for 2 h daily for 10 days, whereas chronic unpredictable stress was induced by employing a battery of stressors of variable magnitude and time for 10 days. Curcumin was administered to drug-treated mice prior to induction of stress. Body weight, adrenal gland weight, ulcer index and biochemical levels of glucose, creatine kinase, cholesterol, corticosterone, thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) were evaluated to assess stress-induced functional changes. Memory deficits were evaluated using the elevated plus maze (EPM) model. Chronic stress and chronic unpredictable stress significantly increased the levels of corticosterone, glucose and creatine kinase and decreased cholesterol levels. Moreover, chronic stress and chronic unpredictable stress resulted in severe memory deficits along with adrenal hypertrophy, weight loss and gastric ulceration. Chronic stress and chronic unpredictable stress also increased oxidative stress assessed in terms of increase in TBARS and decrease in GSH levels. Pretreatment with curcumin (25 and 50 mg/kg p.o.) attenuated chronic stress and chronic unpredictable stress-associated memory deficits, biochemical alterations, pathological outcomes and oxidative stress. It may be concluded that curcumin-mediated antioxidant actions and decrease in corticosterone secretion are responsible for its adaptogenic and memory restorative actions in chronic and chronic unpredictable stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kvetnansky R, Pacak K, Fukuhara K, Viskupic E, Hiremagalur B, Nankova B et al (1995) Sympathoadrenal system in stress. Interaction with the hypothalamic–pituitary–adrenocortical system. Ann NY Acad Sci 771:131–158

    Article  PubMed  CAS  Google Scholar 

  2. Venihaki M, Gravanis A, Margioris AN (1997) Comparative study between normal rat chromaffin and PC12 rat pheochromocytoma cells: production and effects of Corticotropin Releasing Hormone (CRH). Endocrinology 138:698–704

    Article  PubMed  CAS  Google Scholar 

  3. Roy MP, Kirschbaum C, Steptoe A (2001) Psychological cardiovascular and metabolic correlates of individual differences in cortisol stress recovery in young men. Psychoneuroendocrinology 26:375–391

    Article  PubMed  CAS  Google Scholar 

  4. Yadin E, Thomas E (1993) Stimulation of the lateral septum attenuates immobilization-induced stress ulcers. Physiol Behav 59:883–886

    Article  Google Scholar 

  5. Fitzpatrick F, Christedd N, Durant S, Dardenne M, Nunez EA, HomoDelarche F (1992) Glucocorticoids in the nonobese diabetic (NOD) mouse: basal serum levels, effect of endocrine manipulation and immobilization stress. Life Sci 50:1063–1069

    Article  PubMed  CAS  Google Scholar 

  6. Purret SB (2001) Quantitative aspects of stress-induced immunomodulation. Int Immunol Pharmacol 1:507–520

    Article  Google Scholar 

  7. Rai D, Bhatia G, Sen T, Palit G (2001) Anti-stress effects of Ginkgo biloba and Panax ginseng: a comparative study. J Pharamcol Sci 93:458–464

    Article  Google Scholar 

  8. Rai D, Bhatia G, Palit G, Pal R, Singh S, Singh HK (2003) Adaptogenic effects of Bacopa monniera (Brahmi). Pharmacol Biochem Behav 75:823–830

    Article  PubMed  CAS  Google Scholar 

  9. Muruganandam AV, Bhattacharya SK (2003) Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol Biochem Behav 75:547–555

    Article  PubMed  Google Scholar 

  10. Ravindran R, Rathinaswamy SD, Samson J, Senthilvelan M (2005) Noise-stress-induced brain neurotransmitter changes and the effect of Ocimum sanctum (Linn) treatment in albino rats. J Pharm Sci 98:354–360

    Article  CAS  Google Scholar 

  11. Siripurapu KB, Gupta P, Bhatia G, Maurya R, Nath C, Palit G (2005) Adaptogenic and anti-amnesic properties of Evolvulus alsinoides in rodents. Pharmacol Biochem Behav 81:424–432

    Article  PubMed  CAS  Google Scholar 

  12. Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57:1–7

    Article  PubMed  CAS  Google Scholar 

  13. Aggarwal BB, Sundaram C, Mandal D, Saha B, Sen GS, Das T et al (2007) Curcumin prevents tumor-induced T-cell apoptosis through Stat-5a-mediated Bcl-2 induction. J Biol Chem 282:15954–15964

    Article  Google Scholar 

  14. Joe B, Lokesh BR (1997) Effect of curcumin and capsaicin on arachidonic acid metabolism and lysosomal enzyme secretion by rat peritoneal macrophages. Lipids 32:1173–1180

    Article  PubMed  CAS  Google Scholar 

  15. Taher MM, Lamering G, Hershey C, Valerie K (2003) Curcumin inhibits ultraviolet light induced human immunodeficiency virus gene expression. Mol Cell Biochem 254:289–297

    Article  PubMed  CAS  Google Scholar 

  16. Pal A, Pal AK (2000) Studies on the genotoxicity of turmeric extracts in bacterial system. Int J Antimicrob Agents 16:415–417

    Article  PubMed  CAS  Google Scholar 

  17. Jurgens TM, Frazier EG, Schaeffer JM, Jones TE, Zink DL, Boris RP et al (1994) Novel nematocidal agents from Curcuma comosa. J Nat Prod 57:230–235

    Article  PubMed  CAS  Google Scholar 

  18. Tirkey N, Kaur G, Vij G, Chopra K (2005) Curcumin, a diferuloylmethane, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacol 5:1–10

    Google Scholar 

  19. Kanitkar M, Galande S, Bhonde R (2007) Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: a prophylactic and protective role. Eur J Pharmacol 577:183–191

    Article  Google Scholar 

  20. Salvioli S, Sikora E, Cooper EL, Franceschi C (2007) Curcumin in cell death processes: a challenge for CAM of age-related pathologies. Evid Based Complement Alternat Med 4:181–190

    Article  PubMed  CAS  Google Scholar 

  21. Olalde Rangel JA (2005) The systemic theory of living systems and relevance to CAM. Part I: The theory. Evid Based Complement Alternat Med 2:13–18

    Article  PubMed  Google Scholar 

  22. Olalde Rangel JA, Magarici M, Amendola F, del Castillo O (2005) The systemic theory of living systems. Part IV: Systemic medicine—the Praxis. Evid Based Complement Alternat Med 2:429–439

    Article  PubMed  Google Scholar 

  23. Olalde Rangel JA (2005) The systemic theory of living systems and relevance to CAM: The theory (Part II). Evid Based Complement Alternat Med 2:129–137

    Article  PubMed  Google Scholar 

  24. Olalde Rangel JA (2005) The systemic theory of living systems and relevance to CAM: the theory (Part III). Evid Based Complement Alternat Med 2:267–275

    Article  PubMed  Google Scholar 

  25. Zheng J, Dobner A, Babygirija R, Ludwig K, Takahashi T (2009) Effects of repeated restraint stress on gastric motility in rats. Am J Physiol Regul Integr Comp Physiol 296:R1358–R1365

    Article  PubMed  CAS  Google Scholar 

  26. Xia X, Cheng G, Pan Y, Xia ZH, Kong LD (2007) Behavioral, neurochemical and neuroendocrine effects of the ethanolic extract from Curcuma longa L. in the mouse forced swimming test. J Ethnopharmacol 110:356–363

    Article  PubMed  CAS  Google Scholar 

  27. Kvetnansky R, Mikulai L (1970) Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 81:738–743

    Article  Google Scholar 

  28. Ortiz J, Fitizgerald LW, Lane S, Terwillinger R, Nestler EJ (1996) Biochemical adaptations in the mesolimbic dopamine system in response to repeated stress. Neuropsychopharmacology 14:443–452

    Article  PubMed  CAS  Google Scholar 

  29. Itoh J, Nabeshima T, Kameyama T (1990) Utility of an elevated plus maze for the evaluation of memory in mice: effects of nootropics, scopolamine and electroconvulsive shock. Psychopharmacology 101:27–33

    Article  PubMed  CAS  Google Scholar 

  30. Parle M, Singh N (2004) Animal models for testing memory. Asia Pacific J Pharmacol 16:101–120

    Google Scholar 

  31. Trinder P (1969) Estimation of plasma glucose by glucose peroxidase method. Ann Clin Biochem 6:24

    CAS  Google Scholar 

  32. Allain CC, Poon LS, Chan CSG, Richmond W, Paul CF (1974) Enzymatic determination of total plasma cholesterol. Clin Chem 20:470–474

    PubMed  CAS  Google Scholar 

  33. Swanson JR, Wilkinson JH (1972) Measurements of creatine kinase in serum. Stan Methods Clin Chem 7:33

    CAS  Google Scholar 

  34. Katyare SS, Pandya JD (2005) A simplified fluorimetric method for corticosterone estimation in rat serum, tissue and mitochondria. Indian J Biochem Biophys 42:48–50

    CAS  Google Scholar 

  35. Satoh K (1978) Serum lipid peroxide in cerebrospinal disorder determined by a new colorimetric method. Clin Chem Acta 90:37–43

    Article  CAS  Google Scholar 

  36. Tietze F (1969) Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: application to mammalian blood and other tissues. Anal Biochem 27:502–509

    Article  PubMed  CAS  Google Scholar 

  37. Main IHM, Whittle BJR (1975) Investigation of the vasodilator and antisecretory role of prostaglandins in the rat gastric mucosa by use of non-steroidal anti-inflammatory drugs. Br J Pharmacol 53:217–224

    PubMed  CAS  Google Scholar 

  38. Makara GB, Haller J (2001) Non-genomic effects of glucocorticoids in the neural system: evidence, mechanisms and implications. Prog Neurobiol 65:367–390

    Article  PubMed  CAS  Google Scholar 

  39. Walker C, Perrin M, Vale W, Rivier C (1986) Ontogeny of stress response in the rats: role of pituitary and the hypothalamus. Endocrinology 118:1445–1451

    Article  PubMed  CAS  Google Scholar 

  40. Rivier C, Plotsky PM (1986) Mediation by corticotropin releasing factor of adrenohypophysial hormone secretion. Annu Rev Physiol 48:475–489

    Article  PubMed  CAS  Google Scholar 

  41. Zhang J, Zheng F (1997) The role of paraventricular nucleus of the hypothalamus in stress-ulcer formation in rats. Brain Res 61:203–209

    Article  Google Scholar 

  42. Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3:453–462

    Article  PubMed  CAS  Google Scholar 

  43. Eichenbaum H (2000) A cortical-hippocampal system for declarative memory. Nat Rev 1:41–50

    Article  CAS  Google Scholar 

  44. Magarinos AM, Verdugo JMG, Mc Evans BS (1997) Chronic stress alters synaptic terminal structures in hippocampus. Proc Natl Acad Sci USA 94:14002–14008

    Article  PubMed  CAS  Google Scholar 

  45. Biondi E (2006) The role of cholesterol in Alzheimer’s neuro-pathogenesis. Riv Biol 99:210–215

    PubMed  Google Scholar 

  46. Padala KP, Padala PR, Potter JF (2006) Simvastatin-induced decline in cognition. Ann Pharmacother 40:1880–1883

    Article  PubMed  CAS  Google Scholar 

  47. Liu J, Wang X, Mori A (1994) Immobilization stress-induced antioxidant defense changes in rat plasma: effect of treatment with reduced glutathione. Int J Biochem 26:511–517

    Article  PubMed  CAS  Google Scholar 

  48. Liu J, Wang X, Shigenaga MK, Yeo HC, Mori A, Ames BN (1996) Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 10:1532–1538

    PubMed  CAS  Google Scholar 

  49. Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7:284–301

    Article  PubMed  CAS  Google Scholar 

  50. Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Fernandez AP, Rodrigo J et al (2000) Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem 74:785–791

    Article  PubMed  CAS  Google Scholar 

  51. Liu J, Mori A (1999) Stress, aging and brain oxidative damage. Neurochem Res 24:1479–1497

    Article  PubMed  CAS  Google Scholar 

  52. Biswas SK, McClure D, Jimenez LA, Megson IL, Rehman I (2005) Curcumin induces glutathione biosynthesis and inhibits NF-kappa B activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal 7:32–41

    Article  PubMed  CAS  Google Scholar 

  53. Kelly GS (1999) Nutritional and botanical interventions to assist with the adaptation to stress. Altern Med Rev 4:249–265

    PubMed  CAS  Google Scholar 

  54. Akpinar D, Yargicoglu P, Derin N, Aliciguzel Y, Agar A (2007) The effect of lipoic acid on antioxidant status and lipid peroxidation in rats exposed to chronic restraint stress. Physiol Res 56:163–171

    Google Scholar 

  55. Al-Ayadhi LY, Korish AA, Al-Tuwaijri AS (2006) The effect of vitamin E, l-arginine, N-nitro l-arginine methyl ester and forskolin on endocrine and metabolic changes of rats exposed to acute cold stress. Saudi Med J 27:17–22

    PubMed  Google Scholar 

  56. Dhanalakshmi S, Devi RS, Srikumar R, Manikandan S, Thangaraj R (2007) Protective effect of Triphala on cold stress-induced behavioral and biochemical abnormalities in rats. Yakugaku Zasshi 127:1863–1867

    Article  PubMed  CAS  Google Scholar 

  57. Ataie A, Sabetkasaei M, Haghparast A, Moghaddam AH, Kazeminejad B (2010) Neuroprotective effects of the polyphenolic antioxidant agent, Curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat. Pharmacol Biochem Behav 96:378–385

    Article  PubMed  CAS  Google Scholar 

  58. Ahmed T, Enam SA, Gilani AH (2010) Curcuminoids enhance memory in an amyloid-infused rat model of Alzheimer’s disease. Neuroscience 169:1296–1306

    Article  PubMed  CAS  Google Scholar 

  59. Xu Y, Lin D, Li S, Li G, Shyamala SG, Barish PA, Vernon MM, Pan J, Ogle WO (2009) Curcumin reverses impaired cognition and neuronal plasticity induced by chronic stress. Neuropharmacology 57:463–471

    Article  PubMed  CAS  Google Scholar 

  60. Li YC, Wang FM, Pan Y, Qiang LQ, Cheng G, Zhang WY, Kong LD (2009) Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog Neuropsychopharmacol Biol Psychiatry 33:435–449

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India, for supporting this study and providing technical facilities for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, N., Jaggi, A.S., Singh, N. et al. Adaptogenic potential of curcumin in experimental chronic stress and chronic unpredictable stress-induced memory deficits and alterations in functional homeostasis. J Nat Med 65, 532–543 (2011). https://doi.org/10.1007/s11418-011-0535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0535-9

Keywords

Navigation