Skip to main content

Cytotoxic effect of artocarpin on T47D cells

Abstract

In our screening projects for anticancer agents from natural resources, artocarpin [6-(3-methyl-1-butenyl)-5,2′,4′-trihydroxy-3-isoprenyl-7-methoxyflavone] isolated from wood of jack fruit (Artocarpus heterophyllus) showed potent cytotoxic activity on human T47D breast cancer cells. The mode of action of artocarpin was evaluated by its effect on cell viability, nuclear morphology, cell cycle progression, expression of protein markers for apoptosis, and mitochondrial membrane potential (Δψm). These results showed that artocarpin caused a reduction of cell viability in a concentration-dependent manner and an alteration of cell and nuclear morphology. Moreover, the percentage of the sub-G1 phase formation was elevated dose-dependently. Artocarpin induced activation of caspase 8 and 10 as indicated by stronger signal intensity of cleaved-caspase 8 and weaker signal intensity of caspase 10 markers detected after artocarpin treatment. In addition, we also noticed the activation of caspase 3 by artocarpin. There were negligible changes in mitochondrial membrane potential (Δψm) due to artocarpin treatment. All together, these data indicated that artocarpin induced apoptosis in T47D cells possibly via an extrinsic pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Liu Y, Wang MW (2008) Botanical drugs: challenges and opportunities Contribution to Linnaeus Memorial Symposium 2007. Life Sci 82:445–449

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Gupta R, Gabrielsen B, Ferguson SM (2005) Nature’s medicines: traditional knowledge and intellectual property management. Case studies from the National Institutes of Health (NIH), USA. Curr Drug Discov Technol 2:203–219

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Barron D, Di Pietro A, Dumontet C, McIntosh DB (2002) Isoprenoid flavonoids are new leads in the modulation of chemoresistance. Phytochem Rev 1:325–332

    CAS  Article  Google Scholar 

  4. 4.

    Di Pietro A, Conseil G, Peres-Victoria JM, Dayan G, Baubichon-Cortay H, Trompier D, Steinfels E, Jault JM, de Wet H, Maitrejean M, Comte G, Boumendjel A, Mariotte AM, Dumontet C, McIntosh DB, Goffeau A, Castanys S, Gamarro F, Barron D (2002) Modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cell Mol Life Sci 59:307–322

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Botta B, Vitali A, Menendez P, Misiti D, Monache GD (2005) Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem 12:713–739

    CAS  Article  Google Scholar 

  6. 6.

    Cidade HM, Nacimento MS, Pinto MM, Kijjoa A, Silva AM, Herz W (2001) Artelastocarpin and carpelastofuran, two new flavones, and cytotoxicities of prenyl flavonoids from Artocarpuse elasticus against three cancer cell lines. Planta Med 67:867–870

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ko HH, Lu YH, Yang SZ, Won SJ, Lin CN (2005) Cytotoxic prenylflavonoids from Artocarpus elasticus. J Nat Prod 68:1692–1695

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Watjen W, Weber N, Lou YJ, Wang ZQ, Chovolou Y, KampkÖtter A, Kahl R, Proksch P (2007) Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells. Food Chem Toxicol 45:119–124

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Wang YH, Hou AJ, Chen L, Chen DF, Sun HD, Zhao QS, Bastow KF, Nakanish Y, Wang XH, Lee KH (2004) New isoprenylated flavones, artochamins A-E, and cytotoxic principles from Artocarpus chama. J Nat Prod 67:757–761

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Arung ET, Shimizu K, Ryuichiro K (2006) Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis. Biol Pharm Bull 29:1966–1969

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Arung ET, Shimizu K, Ryuichiro K (2006) Inhibitory effect of isoprenoid-substituted flavonoids isolated from Artocarpus heterophyllus on melanin biosynthesis. Planta Med 72:847–850

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Jamil K, Shaik AP, Mahboob M, Krishna D (2004) Effect of organophosphorus and organochlorine pesticides (Monochrotophos, chlorpyriphos, dimethoate, and endosulfan) on human lymphocytes in vitro. Drug Chem Toxol 27:133–144

    CAS  Article  Google Scholar 

  13. 13.

    Sandra F, Matsuda M, Yoshida H, Hirata M (2002) Inositol hexakisphospahate blocks tumor cell growth by activating apoptotic machinery as well as by inhibiting the Akt/NFkB-mediated cell survival pathway. Carcinogenesis 23:2031–2041

    Article  Google Scholar 

  14. 14.

    Sandra F, Hendarmin L, Nakao Y, Nakao Y, Nakamura N, Nakamura S (2005) TRAIL cleaves caspase-8, -9 and -3 of AM-1 cells: a possible pathway for TRAIL to induce apoptosis in ameloblastoma. Tumor Biol 26:258–264

    CAS  Article  Google Scholar 

  15. 15.

    Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Stridh H, Kimland M, Jones DP, Orrenius S, Hampton MB (1998) Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett 429:351–355

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Shimizu K, Fukuda M, Kondo R, Sakai K (2000) The 5α-reductase inhibitory components from heartwood of Artocarpus incisus: structure–activity investigations. Planta Med 66:16–19

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Rajendran M, Manisankar P, Gandhidasan R, Murugesan R (2004) Free radical scavenging efficiency of a few naturally occurring flavonoids: a comparative study. J Agric Food Chem 52:7389–7394

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Lin CN, Lu CM (1996) Novel antiplatelet constituents from formosan Moraceous plants. J Nat Prod 59:834–838

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Sato M, Fujiwara S, Tsuchiya H, Fujii T, Iinuma M, Tosa H, Ohkawa Y (1996) Flavones with antibacterial activity against cariogenic bacteria. J Ethnopharmacol 54:171–176

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Itoigawa M, Ito C, Jun-Ichi M, Nobukuni T, Ichiishi E, Tokuda H, Nishino H, Furukawa H (2002) Cancer chemopreventive activity of flavanones on Epstein–Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett 176:25–29

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Arung ET, Yoshikawa K, Shimizu K, Ryuichiro K (2010) Isoprenoid-substituted flavonoids from wood of Artocarpus heterophyllus on B16 melanoma cells: cytotoxicity and structural criteria. Fitoterapia 81:120–123

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Likhitwitayawuid K, Chaiwiriya S, Sritularak B, Lipipun V (2006) Antiherpetic flavones from the heartwood of Artocarpus gomezianus. Chem Biodivers 10:1138–1143

    Article  Google Scholar 

  24. 24.

    Han AR, Kang YJ, Windono T, Lee SK, Seo EK (2006) Prenylated flavonoids from the heartwood of Artocarpus communis with inhibitory activity on lipopolysaccharideinduced nitric oxide production. J Nat Prod 69:719–721

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Shimizu K, Kondo R, Sakai K, Takeda N, Nagahata T (2002) The skin-lightening effects of artocarpin on UVB-induced pigmentation. Planta Med 68:79–81

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Kerr JFR (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013–2026

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22:8543–8567

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Mor G, Montagna MK, Alvero AB (2008) Modulation of apoptosis to reverse chemoresistance. Apoptosis and cancer, methods and protocols. Humana, Totowa

    Google Scholar 

  29. 29.

    Zamzami N, Susin SA, Marchetti P, Hirsch T, Gómez-Monterrey I, Castedo M, Kroemer G (1996) Mitochondrial control of nuclear apoptosis. J Exp Med 183:1533–1544

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Colgate EC, Miranda CL, Stevens JF, Bray TM, Ho E (2007) Xanthohumol, a prenylatedflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Lett 246:201–209

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Watjen W, Suckow-Schnitker AK, Rohrig R, Kulawik A, Addae-Kyereme J, Wright CW, Passreiter CM (2008) Prenylation flavonoid derivatives from the bark of Erythrina addisoniae. J Nat Prod 71:735–738

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Chen CN, Wu CL, Lin JK (2007) Apoptosis of human melanoma cells induced by the novel compounds propolin A and propolin B from Taiwanese propolis. Cancer Lett 245:218–231

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Lee C, Lin CN, Jow GM (2006) Cytotoxic and apoptotic effects of prenylflavonoid artonin B in human acute lymphoblastic leukemia cells. Acta Pharmacol Sin 27:1165–1174

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

T47D cells were generously donated by Tjandrawati Mozef, M.Sc., Indonesian Institute of Sciences Research Centre for Chemistry (Natural Products, Food and Pharmaceuticals Division), Bandung, Indonesia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ferry Sandra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arung, E.T., Wicaksono, B.D., Handoko, Y.A. et al. Cytotoxic effect of artocarpin on T47D cells. J Nat Med 64, 423–429 (2010). https://doi.org/10.1007/s11418-010-0425-6

Download citation

Keywords

  • Artocarpin
  • 6-(3-Methyl-1-butenyl)-5,2′,4′-trihydroxy-3-isoprenyl-7-methoxyflavone
  • T47D cells
  • Apoptosis
  • Extrinsic pathway
  • Artocarpus heterophyllus