Skip to main content

Biomass and content of ginsenosides and polyacetylenes in American ginseng roots can be increased without affecting the profile of bioactive compounds

Abstract

Fifty selected roots from a 7-year-old American ginseng (Panax quinquefolium L.) plant population grown in Denmark, with root weights varying from 191 to 490 g fresh weight (FW), were investigated for bioactive ginsenosides and polyacetylenes (PAs) in order to determine the correlation between the content of ginsenosides and PAs and root FW. PAs (falcarinol, panaxydol) and ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rg1) were extracted from roots by sequential extraction with ethyl acetate and 80% methanol, respectively, and quantified in extracts by reverse-phase high-performance liquid chromatography (HPLC) using photodiode array detection. Total concentrations of PAs and ginsenosides varied between 150 and 780 mg/kg FW and 5,920 and 15,660 mg/kg FW, respectively. No correlation existed between the content of ginsenosides and PAs and root FW or between the total concentration of ginsenosides and PAs. Strong significant correlation was found between total content of ginsenosides and ginsenoside Rb1 (r = 0.8190, P < 0.0001) and between total content of PAs and falcarinol (r = 0.9904, P < 0.0001). Based on the results of this study, it was concluded that it is possible to select large American ginseng roots for increased biomass production and concentration of bioactive ginsenosides and PAs without affecting the profile of bioactive compounds. Ginsenoside Rb1 and falcarinol were found to be important selection parameters for identifying superior genotypes with the highest content of bioactive compounds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Choi H-K, Wen JA (2000) Phylogenetic analysis of Panax (Araliaceae): integrating cpDNA restriction site and nuclear rDNA ITS sequence data. Plant Syst Evol 224:109–120

    Article  CAS  Google Scholar 

  2. McGraw JB (2001) Evidence for decline in stature of American ginseng plants from herbarium specimens. Biol Conserv 98:25–32

    Article  Google Scholar 

  3. Christensen LP (2008) Ginsenosides: chemistry, biosynthesis, analysis and potential health effects. In: Taylor SL (ed) Advances in food and nutrition research, vol 55. Elsevier, New York, pp 1–99

    Google Scholar 

  4. Kennedy DO, Scholey AB (2003) Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav 75:687–700

    PubMed  Article  CAS  Google Scholar 

  5. Sticher O (1998) Getting to the root of ginseng. Chemtech 28:26–32

    CAS  Google Scholar 

  6. Gillis CN (1997) Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 54:1–8

    PubMed  Article  CAS  Google Scholar 

  7. Yun TK (2003) Experimental and epidemiological evidence on non-organ specific cancer preventive effect of Korean ginseng and identification of active compounds. Mutat Res 523–524:63–74

    PubMed  Google Scholar 

  8. Christensen LP, Jensen M, Kidmose U (2006) Simultaneous determination of ginsenosides and polyacetylenes in American ginseng root (Panax quinquefolium L.) by high-performance liquid chromatography. J Agric Food Chem 54:8995–9003

    PubMed  Article  CAS  Google Scholar 

  9. Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693

    PubMed  Article  CAS  Google Scholar 

  10. Lim W, Mudge KW, Vermeylen F (2005) Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 53:8498–8505

    PubMed  Article  CAS  Google Scholar 

  11. Wang A, Wang C-Z, Wu J-A, Osinski J, Yuan C-S (2005) Determination of major ginsenosides in Panax quinquefolius (American ginseng) using high-performance liquid chromatography. Phytochem Anal 16:272–277

    PubMed  Article  CAS  Google Scholar 

  12. Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16(Suppl.):S28–S37

    PubMed  CAS  Google Scholar 

  13. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M (2003) Degradation of ginsenosides in humans after oral administration. Drug Metab Disp 31:1065–1071

    Article  Google Scholar 

  14. Wakabayashi C, Hasegawa H, Murata J, Saiki I (1997) In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol Res 9:411–417

    PubMed  CAS  Google Scholar 

  15. Murphy LL, Rice JA, Zong W (2001) Ginsenosides Rc and Rh2 inhibit MCF-7 cell proliferation through distinctly different mechanisms. Mol Biol Cell 12:141a

    Google Scholar 

  16. Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K (1994) Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside Rb2. Biol Pharm Bull 17:635–639

    PubMed  CAS  Google Scholar 

  17. Rudakewich M, Ba F, Benishin CG (2001) Neurotrophic and neuroprotective actions of ginsenosides Rb1 and Rg1. Planta Med 67:533–537

    PubMed  Article  CAS  Google Scholar 

  18. Yamaguchi Y, Higashi M, Kobayashi H (1996) Effects of ginsenosides on impaired performance caused by scopolamine in rats. Eur J Pharmacol 312:149–151

    PubMed  Article  CAS  Google Scholar 

  19. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858

    PubMed  Article  CAS  Google Scholar 

  20. Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X (2007) Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. Int Immunopharmacol 7:313–320

    PubMed  Article  CAS  Google Scholar 

  21. Cho JY, Kim AR, Yoo ES, Baik KU, Park MH (2002) Ginsenosides from Panax ginseng differentially regulates lymphocyte proliferation. Planta Med 68:497–500

    PubMed  Article  CAS  Google Scholar 

  22. Teng C-M, Kuo S-C, Ko F-N, Lee JC, Lee L-G, Chen S-C, Huang T-F (1989) Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochim Biophys Acta 990:315–320

    PubMed  CAS  Google Scholar 

  23. Kuo S-C, Teng C-M, Lee J-C, Ko F-N, Chen S-C, Wu T-S (1990) Antiplatelet components in Panax ginseng. Planta Med 56:164–167

    PubMed  Article  CAS  Google Scholar 

  24. Hirakura K, Morita M, Nakajima K, Ikeya Y, Mitsuhashi H (1991) Polyacetylenes from the roots of Panax ginseng. Phytochemistry 30:3327–3333

    Article  CAS  Google Scholar 

  25. Fujimoto Y, Satoh M, Takeuchi N, Kirisawa M (1991) Cytotoxic acetylenes from Panax quinquefolium. Chem Pharm Bull 39:521–523

    PubMed  CAS  Google Scholar 

  26. Fujimoto Y, Wang H, Satoh M, Takeuchi N (1994) Polyacetylenes from Panax quinquefolium. Phytochemistry 35:1255–1257

    Article  CAS  Google Scholar 

  27. Alanko J, Kurahashi Y, Yoshimoto T, Yamamoto S, Baba K (1994) Panaxynol, a polyacetylene compound isolated from oriental medicines, inhibits mammalian lipoxygenases. Biochem Pharmacol 48:1979–1981

    PubMed  Article  CAS  Google Scholar 

  28. Metzger BT, Barnes DM, Reed JD (2008) Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. J Agric Food Chem 56:3554–3560

    PubMed  Article  CAS  Google Scholar 

  29. Matsunaga H, Katano M, Yamamoto H, Fujito H, Mori M, Takata K (1990) Cytotoxic activity of polyacetylene compounds in Panax ginseng C. A. Meyer. Chem Pharm Bull 38:3480–3482

    PubMed  CAS  Google Scholar 

  30. Kobæk-Larsen M, Christensen LP, Vach W, Ritskes-Hoitinga J, Brandt K (2005) Inhibitory effects of feeding with carrots or (–)-falcarinol on development of azoxymethane-induced preneoplastic lesions in the rat colon. J Agric Food Chem 53:1823–1827

    PubMed  Article  CAS  Google Scholar 

  31. Zidorn C, Johrer K, Ganzera M, Schubert B, Sigmund EM, Mader J, Greil R, Ellmerer EP, Stuppner H (2005) Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem 53:2518–2523

    PubMed  Article  CAS  Google Scholar 

  32. Washida D, Kitanaka S (2003) Determination of polyacetylenes and ginsenosides in Panax species using high performance liquid chromatography. Chem Pharm Bull 51:1314–1317

    PubMed  Article  CAS  Google Scholar 

  33. Wills RBH, Stuart DL (2001) Production of high quality Australian ginseng. RIRDC Publication No. 01/170. Kingston, ACT

    Google Scholar 

  34. Soldati F, Tanaka O (1984) Panax ginseng: relation between age of plant and content of ginsenosides. Planta Med 50:351–352

    PubMed  Article  CAS  Google Scholar 

  35. Court WA, Reynolds LB, Hendel JG (1996) Influence of root age on the concentration of ginsenosides of American ginseng (Panax quinquefolium). Can J Plant Sci 76:853–855

    CAS  Google Scholar 

  36. Smith RG, Caswell D, Carriere A, Zielke B (1996) Variation in the ginsenoside content of American ginseng Panax quinquefolium L. roots. Can J Bot 74:1616–1620

    Article  CAS  Google Scholar 

  37. Kubo M, Tani T, Katsuki T, Ishizaki K, Arichi S (1980) Histochemistry I. Ginsenosides in ginseng (Panax ginseng C. A. Meyer) root. J Nat Prod 43:278–283

    Article  CAS  Google Scholar 

  38. Court WA, Hendel JG, Elmi J (1996) Reversed-phase high-performance liquid chromatographic determination of ginsenosides of Panax quinquefolium. J Chromatogr A 755:11–17

    Article  CAS  Google Scholar 

  39. Li W, Gu C, Zhang H, Awang DVC, Fitzloff JF, Fong HHS, van Bremen RB (2000) Use of high-performance liquid chromatography–tandem mass spectrometry to distinguish Panax ginseng C. A. Meyer (Asian ginseng) and Panax quinquefolius L. (North American ginseng). Anal Chem 72:5417–5422

    PubMed  Article  CAS  Google Scholar 

  40. Wang C-Z, Wu JA, McEntee E, Yuan C-S (2006) Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography. J Agric Food Chem 54:2261–2266

    PubMed  Article  CAS  Google Scholar 

  41. Baranska M, Schulz H, Christensen LP (2006) Structural changes of polyacetylenes in American ginseng root can be observed in situ by using Raman spectroscopy. J Agric Food Chem 54:3629–3635

    PubMed  Article  CAS  Google Scholar 

  42. Wang W, Zhao Z-J, Xu Y, Qian X, Zhong J-J (2006) Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax notoginseng by using chemically synthesized 2-hydroxyethyl jasmonate. Appl Microbiol Biotechnol 70:298–307

    PubMed  Article  CAS  Google Scholar 

  43. Yue C-J, Zhong J-J (2005) Purification and characterisation of UDPG: ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochem 40:3742–3748

    Article  CAS  Google Scholar 

  44. Lee M-H, Jeong J-H, Seo J-W, Shin C-G, Kim Y-S, In J-G, Yang D-C, Yi J-S, Choi Y-E (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the excellent technical assistance of Kim Vitten. The support of the Danish Ministry of Science, Technology, and Innovation, Fyn Region, and Development Centre Aarslev is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars P. Christensen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Christensen, L.P., Jensen, M. Biomass and content of ginsenosides and polyacetylenes in American ginseng roots can be increased without affecting the profile of bioactive compounds. J Nat Med 63, 159–168 (2009). https://doi.org/10.1007/s11418-008-0307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-008-0307-3

Keywords

  • Panax quinquefolium
  • Root size
  • Ginsenosides
  • Polyacetylenes
  • Selection
  • Biosynthesis