Skip to main content

Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats

Abstract

Plants with antidiabetic activities provide important sources for the development of new drugs in the treatment of diabetes mellitus. In the present study, we investigated possible antihyperglycemic and antioxidative activities of the aerial part of the Matricaria chamomilla L. ethanolic extract (MCE) in streptozotocin (STZ; 70 mg/kg, i.p.)-induced diabetic rats. The following groups were assigned; sham (did not receive any substance), STZ + distilled water (control), STZ + 5 mg/kg glibenclamide, STZ + 20 mg/kg MCE, STZ + 50 mg/kg MCE, STZ + 100 mg/kg MCE. Diabetic rats were treated for 14 days by gavage. Postprandial blood glucose levels, malondialdehyde, reduced glutathione (GSH), nitrate, nitrite, ascorbic acid, retinol, β-carotene, superoxide dismutase, and catalase levels were measured, and immunohistochemical studies were performed in all of the groups. The obtained data showed that STZ resulted in oxidative stress and affected the antioxidant status. Treatment with different doses of MCE significantly reduced postprandial hyperglycemia and oxidative stress, and augmented the antioxidant system. In histological investigations, MCE treatment protected the majority of the pancreatic islet cells, with respect to the control group. As a result, MCE exhibited significant antihyperglycemic effect and protected β-cells in STZ-diabetic rats, in a dose-dependent manner, and diminished the hyperglycemia-related oxidative stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–f

References

  1. Nolte MS, Karam JH (2004) Pancreatic hormones and antidiabetic drugs. In: Katzung BG (ed) Basic and clinical pharmacology. McGraw Hill, Singapore, pp 693–715

    Google Scholar 

  2. Altan N, Sepici-Dinçel A, Koca C (2006) Diabetes mellitus and oxidative stress. Turk J Biochem 31:51–56

    CAS  Google Scholar 

  3. Robertson RP, Harmon JS (2006) Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med 41:177–184

    PubMed  Article  CAS  Google Scholar 

  4. Jay D, Hitomi H, Griendling KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40:183–192

    PubMed  Article  CAS  Google Scholar 

  5. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:536–546

    Google Scholar 

  6. Baytop T (1984) Therapy with medicinal plants in Turkey (past and present). Publications of the Istanbul University, Istanbul, p 348

  7. Mukherjee PK, Maiti K, Mukherjee K, Houghton PJ (2006) Leads from Indian medicinal plants with hypoglycemic potentials. J Ethnopharmacol 106:1–28

    PubMed  Article  CAS  Google Scholar 

  8. Andrade-Cetto A, Heinrich M (2005) Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J Ethnopharmacol 99:325–348

    PubMed  Article  Google Scholar 

  9. Jain SK, McVie R, Duett J, Herbst JJ (1989) Erythrocyte membrane lipid peroxidase and glycolylated hemoglobin in diabetes. Diabetes 38:1539–1543

    PubMed  Article  CAS  Google Scholar 

  10. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    PubMed  CAS  Google Scholar 

  11. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    PubMed  Article  CAS  Google Scholar 

  12. Omaye ST, Turnbul JD, Savberlich HE (1979) Ascorbic acid analysis. II. Determination after derivatisation with 2.2. dinitrophenylhidrazine. Selected methods for determination of ascorbic acid in animal cells tissues and fluids. In: McCormick DB, Wright LD (eds) Methods in enzymology, vol 62. Academic Press, New York, pp 7–8

    Google Scholar 

  13. Suzuki I, Katoh N (1990) A simple and cheap method for measuring serum vitamin A in cattle using spectrophototmeter. Jpn J Vet Sci 52:1281–1283

    CAS  Google Scholar 

  14. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  15. Flohé L, Otting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104

    PubMed  Article  Google Scholar 

  16. Armagan A, Uz E, Yilmaz HR, Soyupek S, Oksay T, Ozcelik N (2006) Effects of melatonin on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rat testis. Asian J Androl 8:595–600

    PubMed  Article  CAS  Google Scholar 

  17. Hsu WT, Tsai LY, Lin SK, Hsiao JK, Chen BH (2006) Effects of diabetes duration and glycemic control on free radicals in children with type 1 diabetes mellitus. Ann Clin Lab Sci 36(2):174–178

    PubMed  CAS  Google Scholar 

  18. Beltramini M, Zambenedetti P, Raso M, IbnlKayat MI, Zatta P (2006) The effect of Zn(II) and streptozotocin administration in the mouse brain. Brain Res 1109:207–218

    PubMed  Article  CAS  Google Scholar 

  19. Ramesh B, Pugalendi KV (2006) Antioxidant role of umbelliferone in STZ-diabetic rats. Life Sci 79:306–310

    PubMed  Article  CAS  Google Scholar 

  20. Aragno M, Mastrocola R, Catalano MG, Brignardello E, Danni O, Boccuzzi G (2004) Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes 53(4):1082–1088

    PubMed  Article  CAS  Google Scholar 

  21. Sathishsekar D, Subramanian S (2005) Beneficial effects of Momordica charantia seeds in the treatment of STZ-induced diabetes in experimental rats. Biol Pharm Bull 28:978–983

    PubMed  Article  CAS  Google Scholar 

  22. Sugiura M, Ohshima M, Ogawa K, Yano M (2006) Chronic administration of satsuma mandarin fruit (Citrus unshiu MARC.) improves oxidative stress in streptozotocin-induced diabetic rat liver. Biol Pharm Bull 29:588–591

    PubMed  Article  CAS  Google Scholar 

  23. Jessup W, Mohr D, Gieseg SP, Dean RT, Stocker R (1992) The participation of nitric oxide in cell free- and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Biochim Biophys Acta 1180:73–82

    PubMed  CAS  Google Scholar 

  24. Hayashi K, Noguchi N, Niki E (1995) Action of nitric oxide as an antioxidant against oxidation of soybean phosphatidylcholine liposomal membranes. FEBS Lett 370:37–40

    PubMed  Article  CAS  Google Scholar 

  25. Mohamadin AM, Hammad LN, El-Bab MF, Gawad HS (2007) Can nitric oxide-generating compounds improve the oxidative stress response in experimentally diabetic rats? Clin Exp Pharmacol Physiol 34(7):586–593

    PubMed  Article  CAS  Google Scholar 

  26. Kabat A, Dhein S (2006) l-arginine supplementation prevents the development of endothelial dysfunction in hyperglycaemia. Pharmacology 76(4):185–191

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Afyon Kocatepe University research fund (06.FENED.07). The authors thank Prof. Dr. Abdullah Çağlar, Faculty of Food Engineering, Afyon Kocatepe University, for the helpful suggestions to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Emin Büyükokuroğlu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cemek, M., Kağa, S., Şimşek, N. et al. Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats. J Nat Med 62, 284–293 (2008). https://doi.org/10.1007/s11418-008-0228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-008-0228-1

Keywords

  • Streptozotocin
  • Diabetes
  • Oxidative stress
  • Antioxidant
  • Pancreas
  • Immunohistochemistry