Skip to main content
Log in

Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

A novel gallate of tannin, (−)-epigallocatechin-(2β→O→7′,4β→8′)-epicatechin-3′-O-gallate (8), together with (−)-epicatechin-3-O-gallate (4), (−)-epigallocatechin (5), (−)-epigallocatechin-3-O-gallate (6), and (+)-gallocatechin-(4α→8′)-epigallocatechin (7), were isolated from the tea plant Camellia sinensis (L.) O. Kuntze var. sinensis (cv., Yabukita). The structure of 8, including stereochemistry, was elucidated by spectroscopic methods and hydrolysis. The compounds, along with commercially available pyrogallol (1), (+)-catechin (2), and (−)-epicatechin (3), were examined for toxicity towards egg-bearing adults of Caenorhabditis elegans. The anthelmintic mebendazole (9) was used as a positive control. Neither 2 nor 3 were toxic but the other compounds were toxic in the descending order 8, ≈ 6, 9, 4, 5, 1. The LC50 (96 h) values of 8 and 9 were evaluated as 49 and 334 μmol L−1, respectively. These data show that many green tea polyphenols may be potential anthelmintics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Horton J (2003) Global anthelmintic chemotherapy programs: learning from history. Trends Parasitol 19:405–409

    Article  PubMed  Google Scholar 

  2. Kiuchi F, Tsuda Y, Kondo K, Yoshimura H, Nishioka I, Nonaka G (1988) Studies on crude drugs effective on visceral larva migrans III. The bursting activity of tannins on dog roundworm larva. Chem Pharm Bull 36:1796–1802

    PubMed  CAS  Google Scholar 

  3. Yamasaki T, Sato M, Mori T, Mohamed ASA, Fujii K, Tsukioka J (2002) Toxicity of tannins towards the free-living nematode Caenorhabditis elegans and the brine shrimp Artemia salina. J Nat Toxins 11:165–171

    PubMed  CAS  Google Scholar 

  4. Geary TG, Sangster NC, Thompson DP (1999) Frontiers in anthelmintic pharmacology. Vet Parasitol 84:275–295

    Article  PubMed  CAS  Google Scholar 

  5. Rand JB, Johnson CD (1995) Genetic pharmacology: interactions between drugs and gene products in Caenorhabditis elegans. In: Epstein HF, Shakes DC (eds) Methods in cell biology 48. Caenorhabditis elegans: modern biological analysis of an organism. Academic Press, San Diego, pp 187–204

    Google Scholar 

  6. Bennett JL, Pax RA (1986) Micromotility meter: an instrument designed to evaluate the action of drugs on motility of larval and adult nematodes. Parasitol 93:341–346

    CAS  Google Scholar 

  7. Simpkin KG, Coles GC (1981) The use of Caenorhabditis elegans for anthelmintic screening. J Chem Tech Biotechnol 31:66–69

    Article  CAS  Google Scholar 

  8. Wood WB (1988) Introduction to C. elegans biology. In: Wood WB, the Community of C. elegans Researchers (eds) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, New York, pp 1–16

  9. Barreiros ALBS, David JP, de Queiroz LP, David JM (2000) A-type proanthocyanidin antioxidant from Dioclea lasiophylla. Phytochemistry 55:805–808

    Article  PubMed  CAS  Google Scholar 

  10. Lewis JA, Fleming JT (1995) Basic culture methods. In: Epstein HF, Shakes DC (eds) Methods in cell biology 48. Caenorhabditis elegans: modern biological analysis of an organism. Academic Press, San Diego, pp 3–29

    Google Scholar 

  11. Mori T, Mohamed ASA, Sato M, Yamasaki T (2000) Ellagitannin toxicity in the free-living soil-inhabiting nematode, Caenorhabditis elegans. J Pestic Sci 25:405–409

    Google Scholar 

  12. Spence AM, Malone KMB, Novak MMA, Woods RA (1982) The effects of mebendazole on the growth and development of Caenorhabditis elegans. Can J Zool 60:2616–2623

    Article  CAS  Google Scholar 

  13. Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose effect experiments. J Pharmacol Exp Ther 96:99–113

    PubMed  CAS  Google Scholar 

  14. Coxon DT, Holmes A, Ollis WD, Vora VC, Grant MS, Tee JL (1972) Flavanol digallates in green tea leaf. Tetrahedron 28:2819–2826

    Article  CAS  Google Scholar 

  15. Foo LY, Porter LJ (1978) Prodelphinidin polymers: definition of structural units. J Chem Soc Perkin Trans 1:1186–1190

    Article  Google Scholar 

  16. Jacques D, Haslam E, Bedford GR, Greatbanks D (1974) Plant proanthocyanidins Part II. Proanthocyanidin-A2 and its derivatives. J Chem Soc Perkin Trans 1:2663–2671

    Article  Google Scholar 

  17. Fletcher AC, Porter LJ, Haslam E, Gupta RK (1977) Plant proanthocyanidins Part 3. Conformational and configurational studies of natural procyanins. J Chem Soc Perkin Trans 1:1628–1637

    Article  Google Scholar 

  18. Barrett MW, Klyne W, Scopes PM, Fletcher AC, Porter LJ (1979) Plant proanthocyanodins. Part 6. Chiroptical studies Part 95. Circular dichroism of procyanidins. J Chem Soc Perkin Trans 1:2375–2377

    Article  Google Scholar 

  19. Ma C-M, Nakamura N, Hattori M, Kakuda H, Qiao J-C, Yu H-I (2000) Inhibitory effects on HIV-1 protease of constituents from the wood of Xanthoceras sorbifolia. J Nat Prod 63:238–242

    Article  PubMed  CAS  Google Scholar 

  20. Hashimoto F, Nonaka G, Nishioka I (1989) Tannins and related compounds. XC. 8-C-Ascorbyl (−)-epigallocatechin 3-O-gallate and novel dimeric flavan-3-ols, oolonghomobisflavans A and B, from oolong tea (3). Chem Pharm Bull 37:3255–3263

    CAS  Google Scholar 

  21. Lou H, Yamazaki Y, Sasaki T, Uchida M, Tanaka H, Oka S (1999) A-type proanthocyanidins from peanut skins. Phytochemistry 51:297–308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Masahiro Morokuma of Kagawa University for his identification of the plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Yamasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukai, D., Matsuda, N., Yoshioka, Y. et al. Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans . J Nat Med 62, 155–159 (2008). https://doi.org/10.1007/s11418-007-0201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-007-0201-4

Keywords

Navigation