Antinociceptive, anti-inflammatory and antipyretic effects of Muntingia calabura aqueous extract in animal models


The present study was carried out to elucidate the potential of aqueous extract of Muntingia calabura leaves aqueous extract (MCAE) as antinociceptive, anti-inflammatory and antipyretic agents using the formalin-, carrageenan-induced paw edema- and brewer’s yeast-induced pyrexia tests in rats. The extract was prepared by soaking the dried powdered leaves of M. calabura in distilled water (dH2O) overnight. The supernatant obtained, considered as a stock solution (100% concentration/strength), was then diluted to concentrations of 10% and 50% and used together in all experimental models. The MCAE, at concentrations of 10%, 50% and 100%, were found to show significant antinociceptive, anti-inflammatory and antipyretic activities in all tests. However, all of the activities occurred in a concentration-independent manner. The 50% and 100% concentrations of MCAE produced insignificant antinociceptive and antipyretic activities, respectively. Although the 100% concentration of MCAE produced significant (P<0.05) anti-inflammatory activity, the activity was lower than that of the 10% and 50% concentrations of MCAE. Based on the results, we conclude that the M. calabura leaves possessed antinociceptive, anti-inflammatory and antipyretic activities and, thus, justifies the Peruvian folklore claims of its medicinal values.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Morton JF (1987) Jamaica cherry. In: Morton JF (ed) Fruits of warm climates. Julia F Morton, Miami, Florida, pp 65–69

    Google Scholar 

  2. 2.

    Jensen M (1999) Trees commonly cultivated in Southeast Asia: an illustrated field guide, 2nd edn. FAO Corporate Document Repository, Craftsman Press, Bangkok, Thailand

    Google Scholar 

  3. 3.

    Verheij EWM, Coronel RE (1992) Plant resources of Southeast Asia, no. 2: edible fruits and nuts. PROSEA, Bogor, Indonesia

    Google Scholar 

  4. 4.

    Kaneda N, Pezzuto JM, Soejarto DD, Kinghorn AD, Farnworth NR, Santisuk T, Tuchinda P, Udchachon J, Reutrakul V (1991) Plant anticancer agents, XLVIII. New cytotoxic flavonoids from Muntingia calabura roots. J Nat Prod 54(1):196–206

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Su N, Jung Park E, Vigo JS, Graham JG, Cabieses F, Fong HH, Pezzuto JM, Kinghorn AD (2003) Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay. Phytochemistry 63(30):335–341

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Zakaria ZA, Sulaiman MR, Mat Jais AM, Somchit MN, Jayaraman KV, Balakhrisnan G, Abdullah FC (2006) The antinociceptive activity of Muntingia calabura aqueous extract and the involvement of L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in its observed activity in mice. Fundam Clin Pharmacol 20:365–372

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Zakaria ZA, Fatimah CA, Mat Jais AM, Zaiton H, Henie EFP, Sulaiman MR, Somchit MN, Thenamutha M, Kasthuri D (2006) The in vitro antibacterial activity of Muntingia calabura extracts. Int J Pharmacol 2(3):290–293

    Google Scholar 

  8. 8.

    Zakaria ZA, Zaiton H, Henie EFP, Mat Jais AM, Kasthuri D, Thenamutha M, Othman FW, Nazaratulmawarina R, Fatimah CA (2006) The in vitro antibacterial activity of Corchorus olitorius and Muntingia calabura extracts. J Pharmacol Toxicol 1(2):108–114

    Article  Google Scholar 

  9. 9.

    Ikhiri K, Boureima D, Dan-Kouloudo D-D (1992) Chemical screening of medicinal plants used in the traditional pharmacopoeia of Niger. Int J Pharmacog 30:251–262

    CAS  Google Scholar 

  10. 10.

    Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–104

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Chakraborty A, Devi RKB, Rita S, Sharatchandra K, Singh TI (2004) Preliminary studies on antiinflammatory and analgesic activities of Spilanthes acmella in experimental animal models. Ind J Pharmacol 36(3):148–150

    Google Scholar 

  12. 12.

    Reanmongkol W, Subhadhirasakul S, Pairat C, Poungsawai C, Choochare W (2002) Antinociceptive activity of Dyera costulata extract in experimental animals. Songklanakarin J Sci Technol 24(2):227–234

    Google Scholar 

  13. 13.

    Bentley GA, Newton SH, Starr J (1981) Evidence for an action of morphine and the enkephalins on sensory nerve endings in the mouse peritoneum. Br J Pharmacol 73:325–332

    PubMed  CAS  Google Scholar 

  14. 14.

    Bentley GA, Newton SH, Starr J (1983) Studies on the antinociceptive action of alpha-agonist drugs and their interactions with opioid mechanisms. Br J Pharmacol 79:125–134

    PubMed  CAS  Google Scholar 

  15. 15.

    Dharmasiri MG, Ratnasooriya WD, Thabrew MI (2003) Water extract of leaves and stems of preflowering but not flowering plants of Anisomeles indica possesses analgesic and antihyperalgesic activities in rats. Pharmaceut Biol 41:37–44

    Article  Google Scholar 

  16. 16.

    Hunskaar S, Fasmer OB, Hole K (1985) Formalin test in mice: a useful technique for evaluating mild analgesics. J Neurosci Methods 14:69–76

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Heapy CG, Jamieson A, Russell NJW (1987) Afferent C-fiber and A-delta activity in models of inflammation. Br J Pharmacol 90:164–170

    Google Scholar 

  18. 18.

    Malmberg AB, Yaksh TL (1992) Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharmacol Exp Ther 263(1):136–146

    PubMed  CAS  Google Scholar 

  19. 19.

    Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an evaluation of the method. Pain 51:5–17

    PubMed  Article  Google Scholar 

  20. 20.

    Chan TF, Tsai HY, Wu TS (1995) Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med 61:2–8

    Article  Google Scholar 

  21. 21.

    Sulaiman MR, Somchit MN, Israf DA, Ahmad Z, Moin S (2004) Antinociceptive effect of Melastoma malabathricum ethanolic extract in mice. Fitoterapia 75:667–672

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Zakaria ZA, Safarul M, Sulaiman MR, Mat Jais AM, Somchit MN, Abdullah FC (2007) The antinociceptive action of aqueous extract from Muntingia calabura leaves: the role of opioid receptors. Med Princ Pract 16:130–136

    PubMed  Article  Google Scholar 

  23. 23.

    Winter CA, Risley EA, Nuss GW (1962) Carrageenan-induced edema in hind paws of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    PubMed  CAS  Google Scholar 

  24. 24.

    Damas J, Remacle-Volon G, Deflandre E (1986) Further studies of the mechanism of counter irritation by turpentine. Naunyn Schmiedebergs Arch Pharmacol 332:196–200

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Joseph SM, George MC, Rajasekharan Nair J, Priya Senan V, Pillai D, Sherief PM (2005) Effect of feeding cuttlefish liver oil on immune function, inflammatory response and platelet aggregation in rats. Curr Sci 88(3):507–510

    CAS  Google Scholar 

  26. 26.

    di Meglio P, Ianaro A, Ghosh S (2005) Amelioration of acute inflammation by systemic administration of a cell-permeable peptide inhibitor of NF-kappaB activation. Arthritis Rheum 52(3):951–958

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Uzcátegui B, Ávila D, Suárez-Roca H, Quintero L, Ortega J, González B (2004) Anti-inflammatory, antinociceptive, and antipyretic effects of Lantana trifolia Linnaeus in experimental animals. Invest Clín 45(4):317–322

    PubMed  Google Scholar 

  28. 28.

    Katzung BG (1995) Basic and clinical pharmacology, 6th edn. Appleton and Lange, Stanford, Connecticut

    Google Scholar 

  29. 29.

    Tripathi KD (2001) Essentials of medical pharmacology, 4th edn. Jaypee Brothers, New Delhi, India

    Google Scholar 

  30. 30.

    Katzung BG (1995) Basic and clinical pharmacology, 6th edn. Appleton and Lange, Stanford, Connecticut p 23

    Google Scholar 

  31. 31.

    Kim HP, Son KH, Chang HW, Kang SS (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci 96(3):229–245

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Ramesh M, Rao YN, Rao AV, Prabhakar MC, Rao CS, Muralidhar N, Reddy BM (1998) Antinociceptive and anti-inflammatory activity of a flavonoid isolated from Caralluma attenuata. J Ethnopharmacol 62:63–66

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Beirith A, Santos ARS, Calixto JB, Hess SC, Messana I, Ferrari F, Yunes RA (1999) Study of the antinociceptive action of the ethanolic extract and the triterpene 24-hydroxytormentic acid isolated from the stem bark of Ocotea suaveolens. Planta Med 65:50–55

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Ghosh D, Thejomoorthy P, Veluchamy P (1983) Anti-inflammatory and analgesic activities of oleanolic acid 3-/3-glucoside (RDG-1) from Randia dumetorum (Rubiaceae). Ind J Pharmacol 15(4):331–342

    Google Scholar 

  35. 35.

    Karumi Y, Onyeyili P, Ogugbuaja VO (2003) Anti-inflammatory and antinociceptive (analgesic) properties of Momordical balsamina Linn. (Balsam apple) leaves in rats. Pak J Biol Sci 6(17):1515–1518

    Google Scholar 

  36. 36.

    Starec M, Waitzov’a D, Elis J (1988) Evaluation of the analgesic effect of RG-tannin using the “hot plate” and “tail flick” method in mice (in Czech). Cesk Farm 37:319–321

    PubMed  CAS  Google Scholar 

  37. 37.

    Attaway DH, Zaborsky OR (1993) Marine biotechnology, vol 1: pharmaceutical and bioactive natural products. Plenum Press, New York

    Google Scholar 

  38. 38.

    Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159

    PubMed  CAS  Google Scholar 

Download references


This study was supported by a research grant of the Universiti Industri Selangor, Malaysia (project code number: 03013; project vote number: 3090103013). The authors would like to thank the Universiti Putra Malaysia for the use of their facilities.

Author information



Corresponding author

Correspondence to Z. A. Zakaria.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zakaria, Z.A., Nor Hazalin, N.A.M., Zaid, S.N.H.M. et al. Antinociceptive, anti-inflammatory and antipyretic effects of Muntingia calabura aqueous extract in animal models. J Nat Med 61, 443–448 (2007).

Download citation


  • Muntingia calabura
  • Aqueous extract
  • Antinociceptive
  • Anti-inflammatory
  • Antipyretic