Skip to main content
Log in

Pharmacological activities of crocin in saffron

  • Review
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The effect of crocin on improving ethanol-induced impairment of learning behaviors of mice in passive avoidance tasks is reported. Based on these results, it became evident that crocin prevents the inhibitory effect of ethanol on long-term potentiation (LTP) in the dentate gyrus in vivo. We confirmed that crocin inhibits tumor necrosis factor (TNF)-α-induced apoptosis of PC-12 cells. PC-12 cells showed a rapid increase in cellular ceramide levels, followed by an increase in the phosphorylation of c-Jun kinase (JNK), leading to apoptosis by serum/glucose deprivation in the medium. The production of ceramide was dependent on the activation of magnesium-dependent neutral sphingomyelinase (N-SMase), but not on de novo synthesis. The oxidative stress also decreased the cellular levels of glutathione (GSH), which is the potent inhibitor of N-SMase. Crocin treatment resulted in the prevention of N-SMase activation, ceramide production and JNK phosphorylation. Exploration of the crocin’s preventive mechanism in oxidative stress-induced cell death revealed that the activities of GSH reductase and γ-glutamylcysteinyl synthase (γ-GCS) in the γ-glutamyl cycle affected the stable GSH supply that blocks the activation of N-SMase. These results strongly support the importance of the proposed GSH-dependent inhibitory mechanism in oxidative stress-mediated cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A-Smase:

Acidic Smase

BSO:

Buthionine sulfoximine

DMEM:

Dulbecco’s modified Eagle’s medium

ELISA:

Enzyme-linked immunosorbent assay

FB1:

Fumonisin B1

γ-GCS:

γ-Glutamylcysteinyl synthase

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

IL-6:

Interleukin-6

JNK:

c-Jun kinase

LTP:

Long-term potentiation

Mab:

Monoclonal antibody

NGF:

Nerve growth factor

NMDA:

N-methyl-d-aspartate

N-Smase:

Neutral sphingomyelinase

PS:

Phosphatidylserine

SAPK:

Stress-activated protein kinase

SD:

Step down

SM:

Sphingomyelin

SOD:

Superoxide dismutase

ST:

Step through

TNF-α:

Tumor necrosis factor

References

  1. Morimoto S, Umezaki Y, Shoyama Y, Saito H, Nishi K, Irino N (1994) Post-harvest degradation of carotenoid glucose esters in saffron. Planta Med 60:438–440

    Article  PubMed  CAS  Google Scholar 

  2. Lijiang X, Tanaka H, Yaming X, Shoyama Y (1999) Preparation of monoclonal antibody against crocin and its characterization. Cytotechnology 29:65–70

    Article  Google Scholar 

  3. Nair SC, Pannikar B, Panikar KR (1991) Antitumour activity of saffron (Crocus sativus. Cancer Lett 57:109–114

    Google Scholar 

  4. Salomi MJ, Nair SC, Panikkar KR (1991) Inhibitory effects of Nigella sativa and saffron (Crocus sativus) on chemical carcinogenesis in mice. Nut Cancer 16:67–72

    Google Scholar 

  5. Gainer JL, Wallis DA, Jones JR (1976) Oncology 33:222–224

    Article  PubMed  CAS  Google Scholar 

  6. Escrubabi H, Alonso GL, Coca-Prados M, Fernandes JA (1996) 100:23–30

  7. Konoshima T, Takasaki M, Tokuda H, Morimoto S, Tanaka H, Xuan LJ, Saito H, Sugiura M, Molnar J, Shoyama Y (1998) Crocin and crocetin derivatives inhibit skin tumor promotion in mice. Phytother Res 12:400–404

    Article  CAS  Google Scholar 

  8. Miwa T (1954) Study on Gardenia florida L. (Fuructus Gardeniae) as a remedy for icterus. Report IV, on the effect of the active principle and extract of Fuructus Gardeniae on the bile secretion of rabbits, blood bilirubin and peripheral lymph bilirubin of common bile-duct ligated rabbits. Jpn J Pharmacol 4:69–81

    PubMed  CAS  Google Scholar 

  9. Gainer J, Jones JR (1975) The use of crocetin in experimental atherosclerosis. Experimentia 31:548–549

    Article  CAS  Google Scholar 

  10. Ishiyama J, Saito H, Abe K (1991) Epidermal growth factor and basic fibroblast growth factor promote the generation of long-term potentiation in the dentate gyrus of anaesthetized rats. Neurosci Lett 12:403–411

    CAS  Google Scholar 

  11. Abe K, Xie F, Saito H (1991) Epidermal growth factor enhances short-time potentiation and facilitates induction of long-term potentiation of evoked potential in rat hippocampal slices. Brain Res 547:171–174

    Article  PubMed  CAS  Google Scholar 

  12. Zhang XY, Shoyama Y, Sugiura M, Saito H (1994) Acute effects of Crocus sativus L. on passive avoidance performance in mice. Biol Pharm Bull 17:217–221

    PubMed  CAS  Google Scholar 

  13. Sugiura M, Shoyama Y, Saito H, Abe K (1995) Ethanol extract of Crocus sativus L. antagonizes the inhibitory action of ethanol on hippocampal long-term potentiation in vivo. Phytother Res 9:100–104

    Article  Google Scholar 

  14. Crowe MJ, Bresnahan JC, Shumann SL, Masters JN, Beattie MS (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3:73–76

    Article  PubMed  CAS  Google Scholar 

  15. Hill IE, MacManus JP, Rasquinha I, Tuor UI (1995) DNA fragmentation indicative of apoptosis following unilateral cerebral hypoxia-ischemia in the neonatal rat. Brain Res 676:398–403

    Article  PubMed  CAS  Google Scholar 

  16. Pettmann B, Henderson CE (1998) Neuronal cell death. Neuron 20:633–647

    Article  PubMed  CAS  Google Scholar 

  17. Sugiura M, Shoyama Y, Saito H, Abe K (1994) Crocin (crocetin di-gentiobiose ester) prevents the inhibitory effect of ethanol on long-term potentiation in the dentate gyrus in vivo. J Pharmacol Exp Ther 271:703–707

    PubMed  CAS  Google Scholar 

  18. Ochiai T, Soeda S, Ohno S, Tanaka H, Shoyama Y, Shimeno H (2004) Crocin prevents the death of PC-12 cells through sphingomyelinase-ceramide signaling by increasing glutathione synthesis. Neurohem Int 44:321–330

    Article  CAS  Google Scholar 

  19. Soeda S, Ochiai T, Paopong L, Tanaka H, Shoyma Y, Shimeno H (2001) Crocin suppresses tumor necrosisi factor-α-induced cell death of neuronally differentiated PC-12 cells. Life Sci 69:2887–2898

    Article  PubMed  CAS  Google Scholar 

  20. Oppenheim R W (1991) Cell death during development of the nervous system. Ann Rev Neurosci 14:453–501

    Article  PubMed  CAS  Google Scholar 

  21. Batistatou A, Green LA (1991) Aurintricarboxylic acid rescues PC-12 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation: correlation with suppression of endonuclease activity. J Cell Biol 115:461–471

    Article  PubMed  CAS  Google Scholar 

  22. Rukenstein A, Rydel RE, Green LA (1991) Multiple agents rescue PC-12 cells from serum-free cell death by translation- and transcription-independent mechanisms. J Neurosci 11:2552–2563

    PubMed  CAS  Google Scholar 

  23. Mesner PW, Winters TR, Green SH (1992) Nerve growth factor withdrawal-induced cell death in neuronal PC-12 cells resembles that in sympathetic neurons. J Cell Biol 119:1669–1680

    Article  PubMed  CAS  Google Scholar 

  24. Pittman RN, Wang S, DiBenedetto AJ, Mills JC (1993) A system for characterizing cellular and molecular events in programmed neuronal cell death. J Neurosci 13:3669–3680

    PubMed  CAS  Google Scholar 

  25. Colombaioni L, Frago LM, Varela-Nieto I, Pesi R, Garcia-Gil M (2002) Serum deprivation increases ceramide levels and induces poptosis in undifferentiated HN9.10e cells. Neurochem Int 40:327–336

    Article  PubMed  CAS  Google Scholar 

  26. Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH Jr (1991) Inhibition of sphingolipid biosynthesis by fumonisins: implications fro diseases associated with Fusarium moniforme. J Biol Chem 266:14486–14490

    PubMed  CAS  Google Scholar 

  27. Merrill AH Jr, van Echten G, Wang E, Sandhoff K (1993) Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in ucltured neurons in situ. J Biol Chem 268:27299–27306

    PubMed  CAS  Google Scholar 

  28. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN (1996) Requirement for ceramide-initiated SAPF/JNK signaling in stress-induced apoptosis. Nature 380:75–79

    Article  PubMed  CAS  Google Scholar 

  29. Yoshimura S, Banno Y, Nakashima S, Hayashi K, Yamakawa H, Sawada M, Sakai N, Nozawa Y (1999) Inhibition of neutral sphingomyelinase activation and ceramide formation by glutathione in hypoxic PC-12 cell death. J Neurochem 73:675–683

    Article  PubMed  CAS  Google Scholar 

  30. Yoshimura S, Banno Y, Nakashima S, Takenaka K, Sakai H, Nishimura Y, Sakai N, Shimizu S, Eguchi Y, Tsujimoto Y, Nozawa Y (1998) Ceramide formation leads to caspase-3 activation during hypoxic PC-12 cell death. J Biol Chem 273:6921–6927

    Article  PubMed  CAS  Google Scholar 

  31. Liu B, Hannun YA (1997) Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem 272:16381–16287

    Google Scholar 

  32. Liu B, Andrieu-Abadie N, Levade T, Zhang P, Obeid LM, Hannun YA (1998) Glutathione regulation of neutral shphingomyelinase in tumor necrosis factor-α-induced cell death. J Biol Chem 273:11313–11320

    Article  PubMed  CAS  Google Scholar 

  33. Urata Y, Yamamoto H, Goto S, Tsushima H, Akazawa S, Yamashita S, Nagataki S, Kondo T (1996) Long exposure to high glucose concentration impairs the responsive expression of γ-glutamylcysteine synthase by interleukin-1β and tumor necrosis factor-α in mouse endothelial cells. J Biol Chem 271:15146–15152

    Article  PubMed  CAS  Google Scholar 

  34. Nakajima A, Yamada K, Zou L-B, Yan Y, Mizuno M, Nabeshima T (2002). Interleukin-6 protects PC12 cells from 4-hydroxynonenal-induced cytotoxicity by increasing intracellular glutathione levels. Free Radic Biol Med, 32:1324–1332

    Article  PubMed  CAS  Google Scholar 

  35. Pan Z, Perez-Polo R (1993) Role of nerve growth factor in oxidant homeostasis: glutathione metabolism. J Neurochem 61:1713–1721

    Article  PubMed  CAS  Google Scholar 

  36. Griffith OW, Anderson ME, Meister A (1979) Inhibition of glutathione biosynthesis by prothionine sulfoximine (S-n-propyl homocysteine sulfoximine), a selective inhibitor of γ-glutamylcysteine synthase. J Biol Chem 254:1205–1210

    PubMed  CAS  Google Scholar 

  37. Ochiai T, Ohno S, Soeda S, Tanaka H, Shoyama Y, Shimeno H (2004) Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of α-tocopherol. Neurosci Lett 362:61–64

    Article  PubMed  CAS  Google Scholar 

  38. Urano S (1993) Membrane stabilization by vitamin E. In: Mino M, Nakamura H, Diplock AT, Kayden HJ (eds) Vitamin E – its usefulness in health and in curing disease. Japan Sci Soc Press, Tokyo, pp 41–50

  39. Niki E (1993) Function of vitamin E as antioxidant in the membranes. In: Mino M, Nakamura H, Diplock AT, Kayden HJ (eds) Vitamin E – its usefulness in health and in curing disease. Japan Sci Soc Press, Tokyo, pp 23–30

  40. Troy CM, Schelanski ML (1994) Down-regulation of copper/zinc superoxide dismutase causes apoptotic death of PC 12 neuronal cells. Proc Natl Acad Sci USA 91:6384–638

    Article  PubMed  CAS  Google Scholar 

  41. Behl C, Moosmann B (2002) Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radic Biol Med 33:182–191

    Article  PubMed  CAS  Google Scholar 

  42. Harris ME, Hensley K, Butterfield A, Leedle RA, Carney JM (1995) Direct evidence of oxidative injury produced by the Alzheimer’s β-amiloid peptide (1-40) in cultured hippocampal neurons. Exp Neurol 131:193–202

    Article  PubMed  CAS  Google Scholar 

  43. Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J, Cotman CW, Pfeiffer E, Schneider LS, Thal LJ (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 336:1216–1222

    Article  PubMed  CAS  Google Scholar 

  44. Mishima K, Tanaka T, Pu F, Egashira N, Iwasaki K, Hidaka R, Matsunaga K, Takada J, Karube Y, Fujiwara M (2003) Vitamin E isoforms α-tocotrienol and γ-tocopherol prevent cerebral infarction in mice. Neurosci Lett 337:56–60

    Article  PubMed  CAS  Google Scholar 

  45. Abdullaev FI (2002) Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med 227:20–25

    CAS  Google Scholar 

  46. Sugiura M, Shoyama Y, Saito H, Nishiyama N (1995) Crocin improves the ethanol-induced impairment of learning behaviors of mice in passive avoidance tasks. Proc Japan Acad Ser B 71:319–324

    Google Scholar 

  47. Abe K, Sugiura M, Shoyama Y, Saito H (1998) Crocin antagonizes ethanol inhibition of NMDA receptor-mediated responses in rat hippocampal neurons. Brain Res 787:132–138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This review has been prepared as part of the Asian Core Program supported by Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Shoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soeda, S., Ochiai, T., Shimeno, H. et al. Pharmacological activities of crocin in saffron. J Nat Med 61, 102–111 (2007). https://doi.org/10.1007/s11418-006-0120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-006-0120-9

Keywords

Navigation