Skip to main content

Antigenotoxic effect of nordihydroguaiaretic acid against chlormadinone acetate-induced genotoxicity in mice bone-marrow cells


Nordihydroguaiaretic acid (NDGA), a phenolic lignan, was tested for its antigenotoxic potential against chlormadinone acetate (CMA)-induced genotoxic damage in mice bone-marrow cells. Doses of about 22.50 mg/kg body weight of CMA were given along with 1, 5 and 10 mg/kg body weight of NDGA intraperitoneally. The treatment resulted in the reduction of sister chromatid exchanges and chromosomal aberrations induced by CMA, suggesting an antigenotoxic potential of NDGA. Earlier studies show that CMA generates reactive oxygen species, responsible for genotoxic damage. The free radical-scavenging property of NDGA is responsible for the reduction of genotoxic damage induced by CMA in mice bone-marrow cells.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Agarwal R, Wang ZY, Bik DP, Mukhtar H (1991) Nordihydroguaiaretic acid, an inhibitor of lipoxygenase, also inhibits cytochrome P450 mediated monoxygenase activity in rat epidermal and hepatic microsomes. Drug Metab Dispos 19:620–624

    PubMed  CAS  Google Scholar 

  2. 2.

    Capdevilla J, Gil L, Orellana M, Marnett IJ, Mason JL, Yadagiri P, Falck JR (1988) Inhibitors of cytochrome P450 dependent arachidonic acid metabolism. Arch Biochem Biophys 261:257–263

    Article  Google Scholar 

  3. 3.

    Hurtado L, Hernández R, Hernandez F, Fernández F (1979) Fungitoxic compounds in the Larrea resin. In: Campos E, Mabri TJ, Fernández S (eds) Centro de investigación en quimica aplicada Larrea. Mexico, pp 328–340

  4. 4.

    Frasier L, Kehrer JP (1993) Effect of indomethacin, aspirin, nordihydroguaiaretic acid, and piperonyl butoxide on cyclophosphamide induced bladder damage. Drug Chem Toxicol 16:117–133

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Rothman SM, Yamada KA, Lancaster N (1993) Nordihydroguaiaretic acid attenuates NMDA neurotoxicity action beyond the receptor. Neuropharmacology 32:1279–1288

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Carlson JC, Sawada M, Boone DL, Stauffer JM (1995) Stimulation of progesterone secretion in dispersed cells of rat corpora lutea by antioxidants. Steroids 60:272–276

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Nagano N, Imaizumi Y, Hirano M, Watanabe M (1996) Opening of Ca2+-dependent K+ channels by nordihydroguaiaretic acid in porcine coronary arterial smooth muscle cells. Jpn J Pharmacol 70:281–284

    PubMed  CAS  Google Scholar 

  8. 8.

    Culver CA, Michalowski SM, Maia RC, Laster SM (2005) The anti-apoptotic effects of nordihydroguaiaretic acid: inhibition of cPLA(2) activation during TNF-induced apoptosis arises from inhibition of calcium signaling. Life Sci 77:2457–2470

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Fujimoto N, Kohta R, Kitamura S, Honda H (2004) Estrogenic activity of an antioxidant, nordihydroguaiaretic acid (NDGA). Life Sci 74:1417–1425

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Wang ZY, Agarwal R, Zbou ZC, Bickers DR (1991) Antimutagenic and antitumorigenic activities of nordihydroguaiaretic acid. Mutat Res 261:155–162

    Google Scholar 

  11. 11.

    Youngren JF, Gable K, Penaranda C, Maddux BA, Zavodorskaya M, Lobo M, Campbell M, Kerner J, Goldfine ID (2005) Nordihydroguaiaretic acid (NDGA) inhibits the IGF-1 and C-erb B2/HER2/neu receptors and suppresses growth in breast cancer cells. Breast Cancer Res Treat 94:37–46

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Madrigal-Bujaidar E, Díaz Barriga S, Cassani M, Molina D, Ponce G (1998) In vivo and in vitro induction of sister chromatid exchanges by nordihydroguaiaretic acid. Mutat Res 412:139–144

    PubMed  CAS  Google Scholar 

  13. 13.

    Madrigal-Bujaidar E, Díaz Barriga S, Cassani M, Márquez P, Revuelta P (1998) In vivo and in vitro antigenotoxic effect of nordihydroguaiaretic acid against SCEs induced by methylmethane sulfonate. Mutat Res 419:163–168

    PubMed  CAS  Google Scholar 

  14. 14.

    Siddique YH, Afzal M (2004) Evaluation of genotoxic potential of synthetic progestin chlormadinone acetate. Toxicol Lett 153:221–225

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Siddique YH, Afzal M (2004) Induction of chromosomal aberrations and sister chromatid exchanges by chlormadinone acetate: a possible role of reactive oxygen species. Indian J Exp Biol 42:1078–1083

    PubMed  CAS  Google Scholar 

  16. 16.

    Perry P, Wolff S (1974) New Giemsa method for differential staining of sister chromatids. Nature 251:156–158

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Yosida TH, Amano K (1965) Autosomal polymorphism in laboratory bred and wild Norway rats. Rattus norvegicus Misima. Chromosoma 16:658–667

    PubMed  CAS  Google Scholar 

  18. 18.

    IARC (1987) Progestins. In: International Agency for Research on Cancer (eds) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1–42, vol 2. IARC, Lyon, pp 289–291

  19. 19.

    Misdorp W (1991) Progestogens and mammary tumors in dogs and cats. Acta Endocrinol 125:27–31

    PubMed  Google Scholar 

  20. 20.

    Martelli A, Campart GB, Ghia M, Allavena A, Merceto E, Brambilla G (1996) Induction of micronuclei and initiation of enzyme altered foci in the liver of female rats treated with cyproterone acetate, chlormadinone acetate or megestrol acetate. Carcinogenesis 17:551–554

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Schuppler J, Gunzel P (1979) Liver tumors and steroid hormones in rats and mice. Arch Toxicol 2:181–165

    Google Scholar 

  22. 22.

    Yager JD, Yager R (1980) Oral contraceptives steroids as promoters of hepatocarcinogenesis in female Sprague–Dawley rats. Cancer Res 40:3680–3685

    PubMed  CAS  Google Scholar 

  23. 23.

    Siddique YH, Beg T, Afzal M (2005) Antigenotoxic effects of ascorbic acid against megestrol acetate-induced genotoxicity in mice. Hum Exp Toxicol 24:121–127

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Siddique YH, Afzal M (2005) Protective role of allicin and L-ascorbic acid against the genotoxic damage induced by chlormadinone acetate in cultured human lymphocytes. Indian J Exp Biol 43:769–772

    PubMed  CAS  Google Scholar 

  25. 25.

    Siddique YH, Ara G, Beg T, Afzal M (2005) Protective role of natural plant products against estradiol-17β induced genotoxic damage. In: Recent Progress in Medicinal Plants. J. N. Govil (eds) vol 15. Sci. Tech. Publishing, LLC, Houston, Texas, USA, pp 415–429

  26. 26.

    Siddique YH, Beg T, Afzal M (2006) Protective effect of nordihydroguaiaretic acid (NDGA) against norgestrel induced genotoxic damage. Toxicol In Vitro 20:227–233

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Ahmad MS, Sheeba, Afzal M (2004) Amelioration of genotoxic damage by certain phytoproducts in human lymphocyte cultures. Chem Biol Interact 150:107–115

    Article  CAS  Google Scholar 

  28. 28.

    Olivetto EP (1972) Nordihydroguaiaretic acid. A naturally occurring antioxidant. Chem Ind 2:677–679

    Google Scholar 

  29. 29.

    Floriano-Sanchez E, Villanueva C, Noel Medina-Campos O, Rocha D, Javier Sanchez-Gonzalez D, Cardenas-Rodriguez N, Pedraza-Chaverri J (2006) Nordihydroguaiaretic acid is a potent in vitro scavenger of peroxynitrite, singlet oxygen, hydroxyl radical, superoxide anion and hypochlorous acid and prevents in vivo ozone-induced tyrosine nitration in lungs. Free Radic Res 40:523–533

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Dastur JF (1962) Medicinal plants of India and Pakistan. Taraporevala Sons, Bombay

  31. 31.

    Swierenga SHH, Heddle JA, Sigal EA, Gilman JPW, Brillinger RL, Douglas GR, Nestmann ER (1991) Recommended protocols based on a survey of current practice in genotoxicity testing laboratories, IV. Chromosome aberration and sister chromatid exchange in Chinese hamster ovary, V79 Chinese hamster lung and human lymphocyte cultures. Mutat Res 246:301–322

    PubMed  CAS  Google Scholar 

  32. 32.

    IARC (1979) International Agency for Research on Cancer monograph on the evaluation of carcinogenic risk of chemicals to human sex hormones (II), vol 21. IARC, Lyon, pp 431–439

  33. 33.

    El Etreby MF, Gräf KJ (1979) Effect of contraceptive steroids on mammary gland of beagle dog and its relevance to human carcinogenicity. Pharmacol Ther 5:369–402

    Article  CAS  Google Scholar 

  34. 34.

    Feser W, Kerdar RS, Bolde H, Reimann R (1996) Formation of DNA adducts by selected sex steroiods in rat liver. Hum Exp Toxicol 15:556–562

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Werner S, Kuntz S, Beckurts T, Heidecke CD, Wolff T, Schwarz LR (1997) Formation of DNA adducts by cyproterone acetate and some structural analogues in primary cultures of human hepatocytes. Mutat Res 395:179–187

    PubMed  CAS  Google Scholar 

  36. 36.

    Topinka J, Binkova B, Zhu HK, Andrae U, Neumann I, Schwartz LR, Werner S, Wolff T (1995) DNA damaging activity of cyproterone acetate analogues of chlormadinone acetate and megestrol acetate in rat liver. Carcinogenesis 16:1483–1487

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Vijayalaxmi KK, Venu R (1999) In vivo anticlastogenic effects of l-ascorbic acid in mice. Mutat Res 438:47–51

    PubMed  CAS  Google Scholar 

  38. 38.

    Ghaskadbi S, Vaidya VG (1989) In vivo antimutagenic effect of ascorbic acid against the mutagenicity of the common anti-amoebic drug diiodohydroxy-quinoline. Mutat Res 222:219–222

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Dearfield KL, Cimino MC, McCaroll NE, Mauer I, Valcovic LR (2002) Genotoxicity risk assessment: a proposed classification strategy. Mutat Res 521:121–135

    PubMed  CAS  Google Scholar 

Download references


Thanks are due to the CSIR, New Delhi, for awarding SRF no. 9/112(353)/2003 EMR to the author Yasir Hasan Siddique and to the Chairman, Department of Zoology, Aligarh Muslim University, Aligarh (UP) for laboratory facilities.

Author information



Corresponding author

Correspondence to Yasir Hasan Siddique.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siddique, Y.H., Ara, G., Beg, T. et al. Antigenotoxic effect of nordihydroguaiaretic acid against chlormadinone acetate-induced genotoxicity in mice bone-marrow cells. J Nat Med 62, 52–56 (2008).

Download citation


  • Nordihydroguaiaretic acid
  • Chlormadinone acetate
  • Mice bone-marrow cells
  • Antigenotoxicity
  • Natural products