Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: N-gram-based detection of new malicious code. In: Proceedings of 28th annual int’l computer software & applications conference, vol. 2, pp. 41–42. IEEE (2004)
Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the Surprising Behavior of Distance Metrics in High Dimensional Spaces. In: van den Bussche, J., Vianu, V. (eds.) Proceedings of 8th international conference on database theory, pp. 420–434. Springer-Verlag (2001)
Banko, M., Brill, E.: Scaling to Very Very Large Corpora for Natural Language Disambiguation. In: Proceedings of the 39th annual meeting on association for computational linguistics, pp. 26–33 (2001)
Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
MATH
Google Scholar
Corelan Team. Exploit writing tutorial, part 11: heap spraying demystified (2011). https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorialpart-11-heap-spraying-demystified/ (visited on 05/25/2016)
Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012). (issn: 0001-0782)
Article
Google Scholar
Elovici, Y., Shabtai, A., Moskovitch, R., Tahan, G., Glezer, C.: Applying Machine Learning Techniques for Detection of Malicious Code in Network Traffic. In: Proceedings of the 30th annual German conference on advances in artificial intelligence. In: KI ’07, pp. 44–50. Springer-Verlag, Berlin, Heidelberg. isbn: 978- 3-540-74564-8 (2007)
Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Saitta, L. (ed.) Proceedings of the thirteenth international conference on machine learning (ICML 1996), pp. 148–156. Morgan Kaufmann (1996)
Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat Softw. 33(1), 1–22 (2010)
Article
Google Scholar
Gong, P., Ye, J.: A modified orthant-wise limited memory quasi-Newton method with convergence analysis. In: Proceedings of 32nd international conference on machine learning, vol. 37, pp. 276–284 (2015)
Griffin, K., Schneider, S., Hu, X., Chiueh, T.-C.: Automatic generation of string signatures for malware detection. In: Lippmann, R., Clark, A. (eds.) Recent Advances in Intrusion Detection, RAID ’09 Proceedings of the 12th International Symposium on Recent Advances in Intrusion Detection, pp. 101–120 (2009)
Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. Intell. Syst. IEEE 24(2), 8–12 (2009)
Article
Google Scholar
Henchiri, O., Japkowicz, N.: A Feature Selection and Evaluation Scheme for Computer Virus Detection. In: Proceedings of the 6th international conference on data mining. IEEE Computer Society, pp. 891–895. isbn: 0-7695-2701-9 (2006)
Ibrahim, A.H., Abdelhalim, M.B., Hussein, H., Fahmy, A.: Analysis of x86 instruction set usage for Windows 7 applications. In: 2nd international conference on computer technology & development, pp. 511–516 (2010)
Jain, S., Meena, Y.K.: Byte level n-gram analysis for malware detection. In: Venugopal, K.R., Patnaik, L.M. (eds.) Computer Networks and Intelligent Computing, pp. 51–59. Springer, Berlin Heidelberg (2011)
Kephart, J.O., Sorkin, G.B., Arnold, W.C., Chess, D.M., Tesauro, G.J., White, S.R.: Biologically Inspired Defenses Against Computer Viruses. In: Proceedings of the 14th international joint conference on artificial intelligence, vol. 1, pp. 985–996. Morgan Kaufmann (1995). (isbn: 1-55860-363-8)
Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild. J. Mach. Learn. Res. 7, 2721–2744 (2006)
MathSciNet
MATH
Google Scholar
Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executablesin the wild. In: Proceedings of the 2004 ACM SIGKDD international conference on knowledge discovery and data mining, pp. 470–478. ACM Press (2004)
Lo, R.W., Levitt, K.N., Olsson, R.A.: Refereed paper: MCF: a malicious code filter. Comput. Secur. 14(6), 541–566 (1995). issn: 0167-4048
Article
Google Scholar
Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed malware. IEEE Secur. Priv. Mag. 5(2), 40–45 (2007)
Article
Google Scholar
Masud, M.M., Khan, L., Thuraisingham, B.: A scalable multi-level feature extraction technique to detect malicious executables. Inf. Syst. Front. 10(1), 33–45 (2008)
Article
Google Scholar
Masud, M.M., Al-Khateeb, T.M., Hamlen, K.W., Gao, J., Khan, L., Han, J., Thuraisingham, B.: Cloudbased malware detection for evolving data streams. ACM Trans. Manag. Inf. Syst. 2(3), 1–27 (2011)
Article
Google Scholar
Menahem, E., Shabtai, A., Rokach, L., Elovici, Y.: Improving malware detection by applying multi-inducer ensemble. Comput. Stat. Fata Anal. 53(4), 1483–1494 (2009). issn: 0167-9473
MathSciNet
Article
MATH
Google Scholar
Microsoft Portable Executable and Common Object File Format Specification Version 8.3. Tech. rep. Microsoft, p. 98 (2013)
Moskovitch, R., Stopel, D., Feher, C., Nissim, N., Japkowicz, N., Elovici, Y.: Unknown malcode detection and the imbalance problem. J. Comput. Virol. 5(4), 295–308 (2009)
Article
Google Scholar
Ng, A.Y.: Feature selection, \(L_{1}\) vs. \(L_{2}\) regularization, and rotational invariance. In: Proceedings of 21st international conference on machine learning, pp. 78–86 (2004)
Perdisci, R., Lanzi, A., Lee, W.: McBoost: boosting scalability in malware collection and analysis using statistical classification of executables. In: Annual computer security applications conference (ACSAC), pp. 301–310. IEEE (2008)
Quinlan, J.R.: C4.5: programs for machine learning. Vol. 1(3) of Morgan Kaufmann series in Machine Learning. Morgan Kaufmann (1993). isbn: 1558602380
Quist, D.: Open malware. http://openmalware.org/ (visited on 05/25/2016)
Reddy, D.K.S., Pujari, A.K.: N-gram analysis for computer virus detection. J. Comput. Virol. 2(3), 231–239 (2006)
Article
Google Scholar
Roberts, J.-M.: Virus share. https://virusshare.com/ (visited on 05/25/2016)
Santos, I., Penya, Y.K., Devesa, J., Bringas, P.G.: N-grams-based file signatures for malware detection. In: Proceedings of 11th international conference on enterprise information systems, pp. 317–320 (2009)
Schultz, M., Eskin, E., Zadok, F., Stolfo, S.: Data mining methods for detection of new malicious executables. In: Proceedings of IEEE symposium on security and privacy, pp. 38–49 (2001)
Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: Detection of malicious code by applying machine learning classifiers on static features: a state-of-the-art survey. Inf. Secur. Tech. Rep. 14(1), 16–29 (2009). issn: 1363-4127
Article
Google Scholar
Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: PE-Miner: mining structural information to detect malicious executables in realtime. In: Lippmann, R., Clark, A. (eds.) Recent Advances in Intrusion Detection, Springer, Berlin Heidelberg, pp. 121–141 (2009)
Stolfo, S.J., Wang, K., Li, W.-J.: Towards stealthy malware detection. In: Christodorescu, M., Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection, pp. 231–249. Springer, Berlin Heidelberg (2007). isbn: 978-0-387-44599-1
Tahan, G., Rokach, L., Shahar, Y.: Mal-ID: automatic malware detection using common segment analysis and meta-features. J. Mach. Learn. Res. 13, 949–979 (2012). issn: 1532-4435
MathSciNet
MATH
Google Scholar
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267–288 (1994)
MathSciNet
MATH
Google Scholar
Verleysen, M., François, D.: The Curse of Dimensionality in Data Mining and Time Series Prediction. In: Cabestany, J., Prieto, A., Sandoval, F. (eds.) Proceedings of 8th international conference on artificial neural networks: computational intelligence and bioinspired systems, pp. 758–770 (2005)
Yuan, G.-X., Chang, K.-W., Hsieh, C.-J., Lin, C.-J.: A comparison of optimization methods and software for large-scale \(L_{1}\)-regularized linear classification. J. Mach. Learn. Res. 11, 3183–3234 (2010)
MathSciNet
MATH
Google Scholar
Yuan, G.-X., Ho, C.-H., Lin, C.-J.: An improved GLMNET for \(L_{1}\)-regularized logistic regression. J. Mach. Learn. Res. 13, 1999–2030 (2012)
MathSciNet
MATH
Google Scholar
Zhang, B., Yin, J., Hao, J., Zhang, D., Wang, S.: Malicious codes detection based on ensemble learning. In: Proceedings of the 4th international conference on autonomic and trusted computing, pp. 468–477. Springer-Verlag (2007). isbn: 3-540-73546-1
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67(2), 301–320 (2005)
MathSciNet
Article
MATH
Google Scholar