An instrumental perspective on CSCL systems

  • Jacques Lonchamp


The theory of instrumental genesis of Rabardel relates the social and the technical through the concept of instrument. An instrument is defined as a mixed entity made up by an artifact, the technical/material part, and a set of utilization schemes, the social/behavioural part, which both result from users’ constructive activities. This theory is not dedicated to learning contexts, but it can help illuminate many aspects of instrument-mediated collaborative learning situations and CSCL systems. In the first part of this article, the foundational concepts of Rabardel’s theory are summarized and discussed. Drawing from that perspective, the second part of the article stresses (1) the complexity of CSCL instrument geneses mainly due to their dual nature –with both teachers and learners involved in the process, and (2) the multifaceted mediating role CSCL systems can play during both task performance and resources elaboration activities. It is argued that the relative importance of teachers and learners during instrumental geneses is the essential discriminating characteristic of CSCL systems. In the resulting categories (“user-instrumentalizable systems” and “teacher-instrumentalizable systems”), the degree to which systems support the constructive activities related to their own development is considered another important differentiating factor. The third part of the article aims at elaborating and illustrating with representative examples of CSCL systems that theory-based classification. The article concludes by suggesting a number of directions for further research in the field.


Instrumental genesis Mediating instrument CSCL systems 


  1. Artigue, M. (2002). L’intégration de calculatrices symboliques à l’enseignement secondaire. Les leçons de quelques ingénieries didactiques. In D. Guin & L. Trouche (Eds.), Calculatrices symboliques, faire d’un outil un instrument du travail mathématique, un problème didactique (pp. 277–349). Grenoble: Editions La Pensée Sauvage.Google Scholar
  2. Avouris, N., Margaritis, M., & Komis V. (2004). Modeling interaction during small-group synchronous problem-solving activities: The Synergo approach. In Proceedings 2nd International Workshop on Designing Computational Models of Collaborative Learning Interaction at the 7th Conference on Intelligent Tutoring Systems ITS’04 (pp. 13–18). Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  3. Avouris, N., Komis, V., Margaritis, M., & Fidas, C. (2004a). Modelling Space: A tool for synchronous collaborative problem solving. In Proceedings ED-MEDIA’ 04, 16th World Conference on Educational Multimedia & Telecommunications (pp. 381–386). Charlottesville (VA): AACE Press.Google Scholar
  4. Baghaei, N., & Mitrovic, A. (2005). COLLECT-UML: Supporting individual and collaborative learning of UML class diagrams in a constraint-based intelligent tutoring system. In Knowledge-Based Intelligent Information and Engineering Systems, Lecture Notes in Computer Science, 3684 (pp. 458–464). Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  5. Bakhtin, M. M. (1986). Speech genres and other late essays. Translated by V. W. McGee. Austin, Tx: University of Texas Press.Google Scholar
  6. Béguin, P. (2003). Design as a mutual learning process between users and designers. Interacting with Computers, 15(5), 709–730.CrossRefGoogle Scholar
  7. Béguin, P., & Rabardel, P. (2000). Designing for instrument-mediated activity. Scandinavian Journal of Information Systems, 12, 173–190.Google Scholar
  8. Bote-Lorenzo, M. L., Hernández-Leo, D., Dimitriadis, Y., Asensio-Pérez, J. I., Gómez-Sánchez, E., Vega-Gorgojo, G., et al. (2004). Towards reusability and tailorability in collaborative learning systems Using IMS LD and Grid Services. Journal of Advanced Technology for Learning, 1(3), 129–138.Google Scholar
  9. Bourdieu, P. (1980). Le sens pratique. Paris: Les Editions de Minuit.Google Scholar
  10. Cakir, M. P., Zemel, A., & Stahl, G. (2009). The joint organization of interaction within a multimodal CSCL medium. International Journal of Computer-Supported Collaborative Learning, 4(2), 115–149.CrossRefGoogle Scholar
  11. Cerratto, T. I. (2005). Pour une conception des technologies centrée sur l’activité du sujet. Le cas de l’écriture de groupe avec collecticiel. In P. Rabardel & P. Pastré (Eds.), Modèles du sujet pour la conception. Dialectiques activités développement (pp. 157–188). Toulouse: Octarès.Google Scholar
  12. Clot, Y. (1999). La fonction psychologique du travail. Paris: PUF.Google Scholar
  13. Clot, Y., & Faïta, D. (2000). Genres et styles en analyse du travail. Concepts et méthodes. In Travailler, 4, 7–42.Google Scholar
  14. CopperCore (2010). Retrieved July 4, 2011, from
  15. Cuny, X. (1981). Analyse sémiologique et apprentissage des outils-signes: L’apprentissage du schéma d'électricité. Communications, 33, 103–141.CrossRefGoogle Scholar
  16. De Chiara, R., Di Matteo, A., Manno, I., & Scarano, V. (2007). CoFFEE: Cooperative face2face educational environment. In Proceedings 3rd International Conference on Collaborative Computing: Networking, Applications and Worksharing (pp. 243–252). New York, NY.Google Scholar
  17. De Montmollin, M. (1986). L’ergonomie. Paris: Éditions la Découverte.Google Scholar
  18. Dillenbourg, P. (1999). What do you mean by collaborative learning? In Collaborative learning: Cognitive and Computational Approaches (pp.1–19). Oxford, U.K: Elsevier.Google Scholar
  19. Dillenbourg, P., & Hong, F. (2008). The mechanics of CSCL macro scripts. International Journal of Computer-Supported Collaborative Learning, 3(1), 5–23.CrossRefGoogle Scholar
  20. Dimitracopoulou, A., & Petrou, A. (2005). Advanced collaborative distance learning systems for young students: Design issues and current trends on new cognitive and metacognitive tools. THEMES in Education International Journal, 4, 214–224.Google Scholar
  21. Docq, F., & Daele, A. (2001). Uses of ICT tools for CSCL: How do students make as their’s own the designed environment? In Proceedings First European Conference on Computer-Supported Collaborative Learning (pp. 197–204). Maastricht, Netherlands.Google Scholar
  22. Dondi, C., Reynolds, S., Moretti, M., & Cariolato, E. (2011). Trialogical learning. A handbook for organisations and knowledge workers. KP-Lab Technical report. Retrieved December, 10 2011, from
  23. Drijvers, P., & Trouche, L. (2008). From artifacts to instruments: A theoretical framework behind the orchestra metaphor. In K. Heid & G. Blume (Eds.), Research on technology and the teaching and learning of mathematics (Cases and perspectives, Vol. 2, pp. 363–392). Charlotte: Information Age.Google Scholar
  24. Drijvers, P., Doorman, M., Boon, P., & van Gisbergen, S. (2009). Instrumental orchestration: Theory and practice. In Proceedings sixth congress of the European Society for Research in Mathematics Education (pp. 1349–1358). Paris, France: INRP.Google Scholar
  25. Faverge, J. M. (1970). L’homme agent d’infiabilité et de fiabilité du processus industriel. Ergonomics, 13(3), 301–327.CrossRefGoogle Scholar
  26. Fazzini-Feneyrol, N. (1995). Les apprentissages du changement dans l’entreprise. Paris: Editions L’Harmattan.Google Scholar
  27. Flichy, P. (1995). L’innovation technique. Paris: Editions La Découverte.Google Scholar
  28. Folcher, V., & Rabardel, P. (2004). Hommes-Artefacts-Activités: Perspective instrumentale. In P. Falzon (Ed.), L’ergonomie (pp. 251–268). Paris: PUF.Google Scholar
  29. Galinier, V. (1997). Concevoir autour des schèmes d’utilisation: L’exemple d’une boite de vitesse semi-automatique. International Journal of Design and Innovation Research, 10, 41–58.Google Scholar
  30. Giemza, A., Schlanbusch, H., Weinbrenner, S., Wichmann, A., Kindermann, J., Schulz, F., et al. (2009). SCY-Lab technical specifications DVI.1. SCY consortium. Retrieved July 4, 2011, from
  31. Gogoulou, A., Gouli, E., Grigoriadou, M., & Samarakou, M. (2005). ACT: A web-based adaptive communication tool, In Proceedings Computer Supported Collaborative Learning 2005: The Next 10 Years! (pp. 180–189). Hillsdale, N.J.: Lawrence Erlbaum Associates.Google Scholar
  32. Guin, D., & Trouche, L. (2002). Mastering by the teacher of the instrumental genesis in CAS environments: Necessity of instrumental orchestrations. Zentralblatt für Didaktik der Mathematik (ZDM), 34(5), 204–211.CrossRefGoogle Scholar
  33. Guin, D., Joab, M., & Trouche, L. (2008). Conception collaborative de ressources pour l’enseignement des mathématiques. Montpellier, France: INRP-Université Montpellier 2.Google Scholar
  34. Hakkarainen, K. (2009). A knowledge-practice perspective on technology-mediated learning. International Journal of Computer-Supported Collaborative Learning, 4, 213–231.CrossRefGoogle Scholar
  35. Harrer, A., & Malzahn, N. (2006). Bridging the gap – Towards a graphical modeling language for learning designs and collaboration scripts of various granularities. In Proceedings 6th IEEE International Conference on Advanced Learning Technologies (pp. 296–300). IEEE Computer Society Press.Google Scholar
  36. Harrison, S., & Dourish, P. (1996). Re-Place-ing Space: The roles of place and space in collaborative systems. In Proceedings of CSCW’96 (pp. 67–76). New York, NY: ACM Press.Google Scholar
  37. Haspekian, M. (2005). An “instrumental approach” to study the integration of a computer tool into mathematics teaching: The case of spreadsheets. International Journal of Computers for Mathematical Learning, 10, 109–141.CrossRefGoogle Scholar
  38. Hernandes-Leo, D., Villasclaras-Fernandez, E., Asensio-Perez, J., Dimitriadis, Y., & Retalis, S. (2006).CSCL scripting patterns: Hierarchical relationships and applicability. In Proceedings 6th IEEE International on Advanced Learning Technologies (pp. 388–392). IEEE Computer Society Press.Google Scholar
  39. Jermann, P., Soller, A., & Muehlenbrock, M. (2001). From mirroring to guiding: A review of state of the art technology for supporting collaborative learning. In Proceedings First European Conference on Computer-Supported Collaborative Learning (pp. 324–331). Maastricht, Netherlands.Google Scholar
  40. Jones, C., Dirckinck-Holmfeld, L., & Lindström, B. (2006). A relational, indirect, Meso-Level approach to CSCL design in the next decade. International Journal of Computer-Supported Collaborative Learning, 1(1), 35–56.CrossRefGoogle Scholar
  41. Kern, A. (2008). The use of key figures and its impact on activity: The case of a hospital. Frankfurt am Main: Peter Lang.Google Scholar
  42. Lakkala, M., Paavola, S., Kosonen, K., Muukkonen, H., Bauters, M., & Markkanen, H. (2009). Main functionalities of the Knowledge Practices Environment (KPE) affording knowledge creation practices in education. In Proceedings 9th Computer-Supported Collaborative Learning Conference (pp. 297–306). International Society of the Learning Sciences.Google Scholar
  43. LAMS (2010). Retrieved July 4, 2011, from
  44. Leinonen, T., Kligyte, G., Toikkanen, T., Pietarila, J., & Dean, P. (2003). Learning with collaborative software - A guide to Fle3. Helsinki: Taideteollinen korkeakoulu.Google Scholar
  45. Lonchamp, J. (2005). A structured chat framework for distributed educational settings. In Computer Supported Collaborative Learning 2005: The Next 10 Years! (pp. 403–407). Hillsdale, N.J.: Lawrence Erlbaum Associates.Google Scholar
  46. Lonchamp, J. (2006). Supporting synchronous collaborative learning: A generic, multi-dimensional model. International Journal of Computer-Supported Collaborative Learning, 1(2), 247–276.CrossRefGoogle Scholar
  47. Lonchamp, J. (2007a). Towards a web platform for collaborative learning practice, evaluation and dissemination. Journal of Computers, 2(5), 1–8.Google Scholar
  48. Lonchamp, J. (2007b). Linking conversation and task objects in complex synchronous CSCL environments. In Proceedings WebIST’07, International Conference on Web Information Systems and Technologies (pp 281–288), INSTICC.Google Scholar
  49. Lonchamp, J. (2007c). Floor control in complex synchronous CSCL Systems. In Proceedings WebIST’07, International Conference on Web Information Systems and Technologies (pp 397–402), INSTICC.Google Scholar
  50. Lonchamp, J. (2008). Customizable computer-based interaction analysis for coaching and self-regulation in synchronous CSCL systems. Educational Technology & Society, 13(2), 193–205.Google Scholar
  51. Lonchamp, J. (2009). A conceptual and technological framework for building collaborative learning environments. In R. Hijon-Neira (Ed.), Advanced learning (pp. 25–51). Rijeka: IN TECH Publisher.Google Scholar
  52. Lorino, P. (2006). The instrumental genesis of collective activity. The case of an ERP implementation in a large electricity producer. In Proceedings International Conference on Organizational Learning, Knowledge and Capabilities (OLKC’2006). Retrieved July 4, 2011, from
  53. Lotan-Kochan, E. (2006). Analysing graphic-based electronic discussions: Evaluation of student’s activity in Digalo. In Proceedings of the European Conference on Technology Enhanced Learning (EC-TEL 2006), Lecture Notes in Computer Science, 4227 (pp 652–659). Berlin, Heidelberg: Springer-Verlag.Google Scholar
  54. Magnisalis, I., Demetriadis, S., & Karakostas, A. (2011). Adaptive and intelligent systems for collaborative learning support: A review of the field. IEEE Transaction on Learning Technologies, 4(1), 5–20.CrossRefGoogle Scholar
  55. Margaritis, M., Avouris, N., & Kahrimanis, G. (2006). On supporting users’ reflection during small groups synchronous collaboration. In Proceedings 12th International Workshop on Groupware (CRIWG’06), Lecture Notes in Computer Science, 4154 (pp. 140–154). Berlin, Heidelberg: Springer-Verlag.Google Scholar
  56. Mühlpfordt, M., & Wessner, M. (2005). Explicit referencing in chat supports collaborative learning. In Proceedings Computer Supported Collaborative Learning 2005: The Next 10 Years! (pp. 460–469). Hillsdale, N.J.: Lawrence Erlbaum Associates. Google Scholar
  57. Orlikowski, W. J. (2000). Using technology and constituting structures: A practice lens for studying technology in organizations. Organizations Science, 11(4), 404–428.CrossRefGoogle Scholar
  58. Overdijk, M., Bernard, F. X., van Diggelen, W., & Baker, M. (2008). From mastery to utilisation: Appropriation of tools for collaboration in learning situations. International Journal of Computer-Supported Collaborative Learning, 2, 315–357.Google Scholar
  59. Pfister, H.-R., & Mühlpfordt, M. (2002). Supporting discourse in a synchronous learning environment: The learning protocol approach. In Proceedings International Conference on Computer Supported Collaborative Learning (pp. 581–589). Hillsdale, N.J.: Lawrence Erlbaum Associates.Google Scholar
  60. Piaget, J. (1968). La naissance de l’intelligence chez l’enfant. Neuchâtel: Delachaux et Niestle.Google Scholar
  61. Pinkwart N. (2005). Collaborative modeling in graph based environments. PHD Thesis, Universität Duisburg-Essen.Google Scholar
  62. Rabardel, P. (1995a). Les hommes et les technologies, une approche cognitive des instruments contemporains. Paris: Armand Colin.Google Scholar
  63. Rabardel, P. (1995b). Qu’est-ce qu’un instrument ? Appropriation, conceptualisation, mises en situation. In Outils pour le calcul et le traçage de courbes, Dossier de l’Ingénierie Educative. Paris: CNDP.Google Scholar
  64. Rabardel, P., (1999). Le langage comme instrument ? Eléments pour une théorie instrumentale élargie. In Y. Clot (Ed.), (pp. 241–265), Paris: La Dispute.Google Scholar
  65. Rabardel, P. (2000). Eléments pour une approche instrumentale en didactique des mathématiques. In Actes de la Xème Ecole d’été de didactique des mathématiques (pp. 203–213). Caen: IUFMGoogle Scholar
  66. Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: A developmental perspective. Interacting with Computers, 15(5), 665–691.CrossRefGoogle Scholar
  67. Rabardel, P., & Samurçay, R. (2001). From Artifact to Instrument-Mediated Learning. International symposium organized by the Center for Activity Theory and Developmental Work Research. University of Helsinki, Finland. Google Scholar
  68. Restrepo, A. M. (2008). Genèse instrumentale du déplacement en géométrie dynamique chez des élèves de 6ème. PHD Thesis. Université Joseph Fourier Grenoble, France.Google Scholar
  69. Robertson, J., Good, J., & Pain, H. (1998). BetterBlether: The design and evaluation of a discussion tool for education. International Journal of Artificial Intelligence in Education, 9, 219–236.Google Scholar
  70. Rogalski, J., & Samurcay, R. (1993). Représentations de référence: Outils pour le contrôle d’environnements dynamiques. In A. Weill-Fassina, P. Rabardel, & D. Dubois (Eds.), Représentations pour l’action. Octarès: Toulouse.Google Scholar
  71. Roger, J.-L., Ruelland, D., & Clot, Y. (2007). De l’action à la transformation du métier: L’activité enseignante au quotidien. Education et sociétés, 19, 133–146.CrossRefGoogle Scholar
  72. Ronen, M., & Kohen-Vacs, D. (2009). Designing and applying adaptation patterns embedded in the script. In Proceedings IEEE International Conference on Intelligent Networking and Collaborative Systems (pp. 306–310). IEEE Computer Society Press.Google Scholar
  73. Ronen, M., Kohen-Vacs, D., & Raz-Fogel, N. (2006). Adopt & adapt: Structuring, sharing and reusing asynchronous collaborative pedagogy. In Proceedings 7th International Conference on Learning Sciences (pp. 599–605). International Society of the Learning Sciences.Google Scholar
  74. Stahl, G. (2004). Groupware goes to school: Adapting BSCW to the classroom. International Journal of Computer Applications in Technology, 19(3/4), 162–174.CrossRefGoogle Scholar
  75. Tchounikine, P. (2008). Operationalizing macro-scripts in CSCL technological settings. International Journal of Computer-Supported Collaborative Learning, 3(2), 193–233.CrossRefGoogle Scholar
  76. Turani, A., & Calvo, R. A. (2006). Beehive: A software application for synchronous collaborative learning. Campus Wide Information Systems, 23(3), 196–209.CrossRefGoogle Scholar
  77. van Joolingen, W. R., de Jong, T., Lazonder, A. W., Savelsbergh, E. R., & Manlove, S. (2005). Co-Lab: Research and development of an online learning environment for collaborative scientific discovery learning. Computers in Human Behavior, 21, 671–688.CrossRefGoogle Scholar
  78. Vergnaud, G. (1998). Toward a cognitive theory of practice. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics education as a research domain: A search for identity (pp. 227–241). Dordrecht: Kluwer.CrossRefGoogle Scholar
  79. Villasclaras-Fernandez, E. D. (2010). A design process supported by software authoring tools for the integration of assessment within CSCL scripts. PHD Thesis. University of Valladolid, Spain.Google Scholar
  80. Villasclaras-Fernandez, E. D., Hernandez-Leo, D., Asensio-Perez, J. I., Dimitriadis, Y., & De la Fuente-Valentin, L. (2009). Towards embedding assessment in CSCL scripts through selection and assembly of learning and assessment patterns. In Proceedings 9th International Conference on Computer Supported Collaborative Learning (pp. 507–511). International Society of the Learning Sciences.Google Scholar
  81. Vygotsky, L. (1978). Mind in society. Cambridge, MA: Harvard University Press.Google Scholar
  82. Voyiatzaki, E., Polyzos, P., & Avouris, N. (2008). Teacher tools in a networked learning classroom: Monitor, view and interpret interaction data. In Proceedings of the 6th International Conference on Networked Learning (pp. 849–850). Retrieved July 4, 2011, from
  83. Wecker, C., Stegmann, K., Bernstein, F., Huber, M. J., Kalus, G., Rathmeyer, S., et al. (2010). S-COL: A Copernican turn for the development of flexibly reusable collaboration scripts. International Journal of Computer-Supported Collaborative Learning, 5(3), 321–343.CrossRefGoogle Scholar
  84. Wenger, E. (1998). Communities of practice. Learning, meaning and identity. Cambridge: Cambridge University Press.Google Scholar
  85. White, T. (2008). Debugging an artifact, instrumenting a bug: Dialectics of instrumentation and design in technology-rich learning environments. International Journal of Computers for Mathematical Learning, 13, 1–26.CrossRefGoogle Scholar
  86. Whitehead, R. K., & Stotts, D. (2000). ProChat: Dynamic formal collaboration protocols in a chat tool for handled collaboration. Technical Report UNC TR00-016. University of North Carolina, Durham.Google Scholar
  87. Widjaja, I., & Balbo, S. (2006). Embodied and enacted: The Janus faces of structure-of-use. In Proceedings of NordiCHI’2006 (pp.421–424). New York, NY: ACM Press. Google Scholar

Copyright information

© International Society of the Learning Sciences, Inc.; Springer Science + Business Media, LLC 2012

Authors and Affiliations

  1. 1.Campus ScientifiqueLORIA-Université de LorraineVandœuvre-lès-Nancy CedexFrance

Personalised recommendations