Skip to main content

Dissecting sequences of regulation and cognition: statistical discourse analysis of primary school children’s collaborative learning

Abstract

Extending past research showing that regulative activities (metacognitive and relational) can aid learning, this study tests whether sequences of cognitive, metacognitive and relational activities affect subsequent cognition. Scaffolded by a computer avatar, 54 primary school students (working in 18 groups of 3) discussed writing a report about a foreign country for 51,338 turns. Statistical discourse analysis (SDA) of these sequences of talk showed that after low cognition, high cognition, planning or evaluation, both low and high cognition were more likely (some effects lasted 6 conversation turns). After monitoring or positive relational activities (confirm, engage), low cognition was more likely. After a denial however, high cognition was less likely. These results suggest that metacognitive planning organizes subsequent cognitive activities and facilitates the transition between acquisition of knowledge and meaning making, while relational activities help enact them. These insights can inform micro-temporal theories of social regulation and shared knowledge construction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Azevedo, R., & Green, J. A. (2010). The measurement of learners’self-regulated cognitive and metacognitive processes while using computer-based learning enviroments. Educational Psychologist, 45, 203–209.

    Article  Google Scholar 

  • Baker, M. J., de Vries, E., Lund, K., & Quignard, M. (2001). Computer-mediated epistemic interactions for co-constructing scientific notions. In P. Dillenbourg, A. Eurelings, & K. Hakkarainen (Eds.), Proceedings of EuroCSCL 2001 (pp. 89–96). Maastricht: Maastricht McLuhan Institute.

    Google Scholar 

  • Barron, B. (2003). When smart groups fail. Journal of the Learning Sciences, 12(3), 307–359.

    Article  Google Scholar 

  • Benjamini, Y., Krieger, A. M., & Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika, 93, 491–507.

    Article  Google Scholar 

  • Burgoon, J. K., Dillman, L., & Stern, L. (1993). Adaptation in dyadic interaction. Communication Theory, 3, 295–316.

    Article  Google Scholar 

  • Chen, G., Chiu, M. M., & Wang, Z. (2012). Social metacognition and the creation of correct, new ideas: A statistical discourse analysis of online mathematics discussions. Computers in Human Behavior, 28(3), 868–880.

    Google Scholar 

  • Chi, M. (2009). Active-constructive-interactive. Topics in Cognitive Science, 1(1), 73–105.

  • Chi, M.T.H., Siler, S., Jeong, H., Yamauchi, T., & Hausmann, R. (2001). Learning from human tutoring. Cognitive Science, 25, 471–534.

    Google Scholar 

  • Chiu, M. M. (2008). Flowing toward correct contributions during groups’ mathematics problem solving: A statistical discourse analysis. Journal of the Learning Sciences, 17(3), 415–463.

    Google Scholar 

  • Chiu, M. M., & Khoo, L. (2003). Rudeness and status effects during group problem solving. Journal of Educational Psychology, 95, 506–523.

    Google Scholar 

  • Chiu, M. M., & Khoo, L. (2005). A new method for analyzing sequential processes: Dynamic multi-level analysis. Small Group Research, 36, 600–631.

    Google Scholar 

  • Clark, H. H., & Brennan, S. E. (1991). Grounding in communication. In L. B. Resnick, R. M. Levine, & S. D. Teasley (Eds.), Perspectives on socially shared cognition. Washington, DC: American Psychological Association.

    Google Scholar 

  • Cohen, E. G. (1994). Restructuring the classroom: conditions for productive small groups. Review of Educational Research, 64(1), 1–35.

    Article  Google Scholar 

  • Craik, F., & Lockhart, R. (1972). Levels of processing: a framework for memory research. Journal of Verbal Thinking and Verbal Behavior, 11, 671–684.

    Article  Google Scholar 

  • Davis, E. A., & Linn, M. (2000). Scaffolding students’ knowledge integration; Prompts for reflection in KIE. International Journal of Science Education, 22(8), 819–837.

    Article  Google Scholar 

  • De Bruin, A. B. H., Theide, K. W., Camp, G., & Redford, J. (2011). Generating keywords improves metacomprehension and self-regulation in elementary and middle school children. Journal of Experimental Child Psychology, 109(3), 294–310.

    Article  Google Scholar 

  • Dillenbourg, P. (1999). What do you mean by collaborative learning? In P. Dillenbourg (Ed.), Collaborative-learning (pp. 1–19). Oxford: Elsevier.

    Google Scholar 

  • Efklides, A. (2008). Metacognition. European Psychologist, 13, 277–287.

    Article  Google Scholar 

  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: a new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906–911.

    Article  Google Scholar 

  • Fleiss, J. (1981). Statistical examples for rates and proportions. New York: Wiley.

    Google Scholar 

  • Franke, R. H., & Kaul, J. D. (1978). The Hawthorne experiments: first statistical interpretation. American Sociological Review, 43, 623–643.

    Article  Google Scholar 

  • Gee, J. P. (2005). An introduction to discourse analysis: Theory and method. London: Routledge.

    Google Scholar 

  • Goldstein, H. (1995). Multilevel statistical models. Sydney: Edward Arnold.

    Google Scholar 

  • Hadwin, A., & Oshige, M. (2011). Self-regulation, co-regulation, and socially shared regulation. Teachers College Record, 113(6).

  • Huedo-Medina, T. B., Sanchez-Meca, J., Marin-Martinez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychological Methods, 11, 193–206.

    Google Scholar 

  • Iiskala, T., Vauras, M., Lehtinen, E., & Salonen, P. (2011). Socially shared metacognition within primary school pupil dyads’ collaborative processes. Learning and Instruction, 21, 379–393.

    Article  Google Scholar 

  • Janssen, J., Erkens, G., Kirschner, P. A., & Kanselaar G. (2012). Task-related and social regulation during online collaborative learning. Metacognition and Learning, 7(1), 25–43.

    Google Scholar 

  • Järvelä, S., & Hadwin, A. (2013). New frontiers: regulating learning in CSCL. Educational Psychologist, 48, 25–39.

    Article  Google Scholar 

  • Jehn, K. A., & Shah, P. P. (1997). Interpersonal relationships and task performance: an examination of mediation processes in friendship and acquaintance groups. Journal of Personality and Social Psychology, 72, 775–790.

    Article  Google Scholar 

  • Kempler, T. M., & Linnenbrink, E. A. (2006). Helping behaviors in collaborative groups in math: A descriptive analysis. In S. Karabenick & R. Newman (Eds.), Help seeking in academic settings: Goals, groups, and context (pp. 89–115). Mahwah: Erlbaum.

    Google Scholar 

  • Kennedy, P. (2008). A guide to econometrics. Cambridge: Blackwell.

    Google Scholar 

  • King, A. (1998). Transactive peer tutoring: distributing cognition and metacognition. Educational Psychology Review, 10(1), 57–74.

    Article  Google Scholar 

  • King, A. (2002). Structuring peer interaction to promote high-level cognitive processing. Theory Into Practice, 41(1), 33–39.

    Article  Google Scholar 

  • King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9, 137–163.

    Article  Google Scholar 

  • Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: a review of the research. Computers in Human Behavior, 19, 335–353.

    Article  Google Scholar 

  • Krippendorff, K. (2004). Content analysis. Thousand Oaks: Sage.

    Google Scholar 

  • Lin, L., & Zabrucky, K. M. (1998). Calibration of comprehension: research and implications for education and instruction. Contemporary Educational Psychology, 23, 345–391.

    Article  Google Scholar 

  • Lu, J., Chiu, M. M., & Law, N. (2011). Collaborative argumentation and justifications: A statistical discourse analysis of online discussions. Computers in Human Behavior, 27, 946–955.

    Google Scholar 

  • MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect. Multivariate Behavioral Research, 39, 99–128.

    Article  Google Scholar 

  • Massey, A. P., Montoya-Weiss, M. M., & Hung, Y. (2003). Because time matters: temporal coordination in global virtual teams. Journal of Management Information Systems, 19, 129–155.

    Google Scholar 

  • McGrath, J. E. (1991). Time, interaction, and performance (TIP): a theory of groups. Small Group Research, 22(2), 147–174.

    Article  Google Scholar 

  • Meijer, J., Veenman, M. V., & van Hout-Wolters, B. H. (2006). Metacognitive activities in text-studying and problem-solving: development of a taxonomy. Educational Research and Evaluation, 12(3), 209–237.

    Article  Google Scholar 

  • Molenaar, I. (2003). Exploration-net: Online collaboration. In D. Lassner & C. McNaught (Eds.), Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications (pp. 398–400). Chesapeake, VA: AACE.

  • Molenaar, I., & Roda, C. (2008). Attention management for dynamic and adaptive scaffolding. Pragmatics & Cognition, 16(2), 224–271.

    Google Scholar 

  • Molenaar, I., Chiu, M. M., Sleegers, P. J. C., & van Boxtel, C.A.M. (2011a). Scaffolding of Small Groups’ Metacognitive Activities with an Avatar. International Journal of Computer Supported Collaborative Learning, 6(4), 601–624.

    Google Scholar 

  • Molenaar, I., van Boxtel, C. A. M., & Sleegers, P.J.C. (2011b). Metacognitive Scaffolding in an Innovative Learning Arrangement. Instructional Science, 39(6), 785–803.

  • Nelson, T. O. (1996). Consciousness and metacognition. American Psychologist, 51, 102–116.

    Article  Google Scholar 

  • Nijstad, B. A., Diehl, M., & Stroebe, W. (2003). Cognitive stimulation and interference in idea generating groups. In P. B. Paulus & B. A. Nijstad (Eds.), Group creativity: Innovation through collaboration (pp. 137–159). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Pieschl, S. (2009). Metacognitive calibration - an extended conceptualization and potential applications. Metacognition and Learning, 4(1), 3–31.

    Article  Google Scholar 

  • Reimann, P. (2009). Time is precious. International Journal of Computer-Supported Collaborative Learning, 3, 239–257.

    Article  Google Scholar 

  • Reiser, B. J. (2004). Scaffolding complex learning: the mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273–304.

    Article  Google Scholar 

  • Salomon, G. (1993). Distributed cognitions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Van Boxtel, C. (2004). Studying peer interaction from three perspectives. In J. L. van der Linden & P. Renshaw (Eds.), Dialogic learning (pp. 125–144). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Veenman, M. V. J. (2005). The assessment of metacognitive skills. In C. Artelt & B. Moschner (Eds.), Lernstrategien und Metakognition: Implikationen für Forschung und Praxis (pp. 75–97). Berlin: Waxmann.

    Google Scholar 

  • Veldhuis-Diermanse, A. E. (2002). CSCLearning? Participation, learning activities and knowledge construction in computer-supported collaborative learning in higher education. Unpublished PhD thesis, Wageningen University, The Netherlands.

  • Volet, S., Vauras, M., & Salonen, P. (2009a). Self- and social regulation in learning contexts: an integrative perspective. Educational Psychologist, 44(4), 215–226.

    Article  Google Scholar 

  • Volet, S. E., Summers, M., & Thurman, J. (2009b). High-level co-regulation in collaborative learning. Learning and Instruction, 19(2), 128–143.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society. Cambridge: Harvard University Press.

    Google Scholar 

  • Webb, N. M., Nemer, K. M., & Zuniga, S. (2002). Short circuits or superconductors? American Educational Research Journal, 39, 943–989.

    Article  Google Scholar 

  • Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46, 71–95.

    Article  Google Scholar 

  • Wilson, J. M., Straus, S. G., & McEvily, B. (2006). All in due time. Organizational Behavior and Human Decision Processes, 99, 16–33.

    Article  Google Scholar 

  • Winne, P. H. (2010). Improving measurements of self-regulated learning. Educational Psychologist, 45, 267–276.

    Article  Google Scholar 

  • Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 277–304). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Wise, A., & Chiu, M. M. (2011). Analyzing temporal patterns of knowledge construction in a role-based online discussion. International Journal of Computer-Supported Collaborative Learning, 6, 445–470.

    Google Scholar 

  • Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 17, 89–100.

    Article  Google Scholar 

  • Zimmerman, B. J. (2002). Becoming a self-regulated learner: an overview. Theory into Practice, 42(2), 64–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge Molenaar.

Appendix

Appendix

Table 5 Subcategories of cognitive activities
Table 6 Subcategories of metacognitive activities
Table 7 Subcategories of relational activities

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Molenaar, I., Chiu, M.M. Dissecting sequences of regulation and cognition: statistical discourse analysis of primary school children’s collaborative learning. Metacognition Learning 9, 137–160 (2014). https://doi.org/10.1007/s11409-013-9105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11409-013-9105-8

Keywords

  • Metacognition
  • Temporal analysis
  • Collaborative learning
  • Scaffolding
  • Process analysis
  • Elementary education
  • Discourse analysis