Abstract
This paper uses Data Envelopment Analysis (DEA) to compare the performance of hedge funds to that of equities. The analysis covers the period from January 1999 to December 2013 and shows that under a mean–variance DEA, hedge funds significantly outperform equities. However, this outperformance is no longer significant when skewness and kurtosis are integrated. The DEA technique is particularly interesting for assessing hedge fund performance because of its flexibility and its non-parametric property: DEA allows to easily add additional attributes to the analysis and assesses performance relative to the sample under analysis without requiring any benchmark.
This is a preview of subscription content, access via your institution.



Availability of data and materials
The data that support the findings of this study are available from Refinitiv’s Lipper Fund Research, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are, however, available from the authors upon reasonable request and with permission of Refinitiv.
Notes
The Mann–Whitney test is a non-parametric statistical test that tests the null hypothesis that the averages of two groups are equal.
DMUs refer to hedge funds and equities in our case.
TASS started keeping defunct funds inside their database only after January 1994. Before that date, defunct funds were completely deleted. Therefore, to avoid survivorship bias, we only include funds that were launched as from January 1994.
Those are mainly series of different share classes of the same fund.
An analysis with value-weighted returns is also conducted and the findings are similar.
As stated above, DEA scores measure the distance that separates each unit from the efficient frontier. Hence, the lower the DEA score, the closer the unit is to the efficient frontier.
This might be due to the small sample size of the DSB category.
The NBER defines the financial crisis as starting in December 2007 and lasting until June 2009.
References
Ackermann, C., McEnally, R., Ravenscraft, D.: The performance of hedge funds: risk, return, and incentives. J. Financ. 54, 833–874 (1999)
Agarwal, V., Naik, Y.N.: Risks and portfolio decisions involving hedge funds. Rev. Financ. Stud. 17, 63–98 (2004)
Amin, G.S., Kat, H.M.: Hedge fund performance 1990–2000: Do the “money machines” really add value? J. Financ. Quant. Anal. 38, 251–274 (2003)
Bali, T.G., Brown, S.J., Demirtas, K.O.: Do hedge funds outperform stocks and bonds? Manage. Sci. 59(8), 1887–1903 (2013)
Chambers, R.G., Chung, Y., Färe, R.: Profit, directional distance functions, and nerlovian efficiency. J. Optim. Theory Appl. 120, 1–27 (1998)
Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the inefficiency of decision making units. Eur. J. Oper. Res. 2, 429–444 (1978)
Cummins, J.D., Weiss, M.A.: Analyzing firm performance in the insurance industry using frontier efficiency and productivity methods. In: Handbook of Insurance, 2nd edn. Kluwer Academic Publishers, George D. Boston (2011)
Eling, M.: Performance measurement of hedge funds using data envelopment analysis. Fin. Markets. Portfolio Mgmt. 20, 442–471 (2006)
Färe, R., Grosskopf, S.: Theory and application of directional distance functions. J. Prod. Anal. 13, 93–103 (2000)
Fung, W., Hsieh, D.A.: Empirical characteristics of dynamic trading strategies: the case of hedge funds. Rev. Financ. Stud. 10, 275–302 (1997)
Fung, W., Hsieh, D.A.: The risk in hedge fund strategies: theory and evidence from trend followers. Rev. Financ. Stud. 14, 313–341 (2001)
Glawischnig, M., Sommersguster-Reichmann, M.: Assessing the performance of alternative investments using non-parametric efficiency measurement approaches: Is it convincing? J. Bank. Finance 34, 295–303 (2010)
Gregoriou, G.N.: Performance appraisal of funds of hedge funds using data envelopment analysis. J. Wealth Manag. 5, 88–95 (2003)
Gregoriou, G.N.: Trading efficiency of commodity trading advisors using data envelopment analysis. Deriv. Use Trad. Regul. 12, 102–114 (2006b)
Gregoriou, G.N., Zhu, J.: Data envelopment analysis: a way to assess the efficiency of funds of hedge funds. J. Portf. Manag. 33, 120–132 (2007)
Leshno, M., Levy, H.: Preferred by “all” and preferred by “most” decision makers: almost stochastic dominance. Manage. Sci. 48(8), 1074–1085 (2002)
Lhabitant, F.S.: Hedge Funds: Quantitative Insights. Wiley, London (2004)
Lhabitant, F.S.: Handbook of Hedge Funds. Wiley, London (2006)
Liang, B.: The performance of hedge funds. Financ. Anal. J. 55, 72–85 (1999)
Nguyen-Thi-Thanh, H.: On the use of data envelopment analysis in hedge fund selection. Working Paper, Université d’Orléans (2006)
Scott, R., Horvath, P.: On the direction of preference for moments of higher order than the variance. J. Financ. 35, 910–919 (1980)
Silva Portela, M.C.A., Thanassoulis, E., Simpson, G.: Negative data in DEA: a directional distance approach applied to bank branches. J. Oper. Res. Soc. 55, 1111–1121 (2004)
Simar, L., Vanhems, A., Wilson, P.W.: Statistical inference for DEA estimators of directional distance. Eur. J. Oper. Res. 220, 853–864 (2012)
Wilkens, K., Zhu, J.: Portfolio evaluation and benchmark selection: a mathematical programming approach. J. Altern. Invest. 4(1), 9–19 (2001)
Acknowledgements
We would like to express our gratitude to Thomson Reuters for providing us with data on hedge funds. We are also grateful for the helpful comments and suggestions made by the editor Markus Schmid, Caroline Buts, Catherine Dehon, Pascal François, Laurent Gheeraert, Federico Platania, Olivier Scaillet, and two anonymous referees.
Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hassouni, A., Pirotte, H. Beyond mean–variance: assessing hedge fund performance in a non-parametric world. Financ Mark Portf Manag 36, 473–488 (2022). https://doi.org/10.1007/s11408-022-00409-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11408-022-00409-8