Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

What is the best Lévy model for stock indices? A comparative study with a view to time consistency

  • 129 Accesses

Abstract

Lévy models are frequently used for asset log-returns. An important criterion is the distributional assumption on the increments. Candidates include, for example, the generalized hyperbolic, the normal inverse Gaussian, and the (skew) Student–Lévy process. We perform a comparative study for multiple equity indices of different countries using different Lévy models to determine the best fit using the Kolmogorov–Smirnov statistic, the Anderson–Darling statistic, and the Bayesian information criterion as goodness-of-fit measures. We fit Lévy models both to daily and to hourly log-returns. To date, the literature has paid little attention to the question of whether these Lévy models for daily returns also fit well at higher frequencies, that is, intraday returns, and vice versa. Eberlein and Özkan (Quant Finance 3(1):40–50, 2003) called this “time consistency.” Our key finding is that there are time inconsistencies. This means that some models that fit well for daily returns, for example, the variance gamma model, fit poorly for hourly returns. We find that the Student–Lévy process is a more appropriate alternative.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    It is named for Josef Meixner (1908-1994) to honor his work on so-called Meixner polynomials.

References

  1. Aas, K., Haff, I.H.: The generalized hyperbolic skew Student’s t-distribution. J. Financ. Econom. 4(2), 275–309 (2006)

  2. Anderson, T.W., Darling, D.A.: A test of goodness of fit. J. Am. Stat. Assoc. 49(268), 765–769 (1954)

  3. Aparicio, F.M., Estrada, J.: Empirical distributions of stock returns: European securities markets, 1990–95. Eur. J. Finance 7(1), 1–21 (2001)

  4. Bachelier, L.: Théorie de la spéculation, Ph.D. thesis, Annales Scientifiques de l’École Normale Supérieure (1900). http://archive.numdam.org/article/ASENS_1900_3_17__21_0.pdf

  5. Barndorff-Nielsen, O.E.: Exponentially decreasing distributions for the logarithm of particle size. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 353(1674), 401–419 (1977)

  6. Barndorff-Nielsen, O.E.: Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Stat. 24(1), 1–13 (1997)

  7. Barndorff-Nielsen, O., Halgreen, C.: Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 38(4), 309–311 (1977)

  8. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Political Econ. 81(3), 637–654 (1973)

  9. Blattberg, R.C., Gonedes, N.J.: A comparison of the stable and Student distributions as statistical models for stock prices. J. Bus. 47(2), 244–280 (1974)

  10. Breymann, W., Lüthi, D.: “ghyp: a package on generalized hyperbolic distributions,” manual for R package ghyp (2013). https://pdfs.semanticscholar.org/6081/ee4e27094b6547e1d2c70e941ab9fb954ef7.pdf

  11. Cassidy, D.T.: Describing n-day returns with Student’s t-distributions. Phys. A Stat. Mech. Appl. 390(15), 2794–2802 (2011)

  12. Cassidy, D.T., Hamp, M.J., Ouyed, R.: Pricing European options with a log Student’s t-distribution: a Gosset formula. Phys. A Stat. Mech. Appl. 389(24), 5736–5748 (2010)

  13. Corlu, C.G., Corlu, A.: Modelling exchange rate returns: which flexible distribution to use? Quant. Finance 15(11), 1851–1864 (2015)

  14. Corlu, C.G., Meterelliyoz, M., Tinic, M.: Empirical distributions of daily equity index returns: a comparison. Expert Syst. Appl. 54, 170–192 (2016)

  15. Eberlein, E., v. Hammerstein, E.A.: Generalized hyperbolic and inverse Gaussian distributions: limiting cases and approximation of processes. In: Dalang, R.C., Dozzi, M., Russo, F. (eds.) Seminar on Stochastic Analysis, pp. 221–264. Random Fields and Applications IV, Birkhäuser, Basel (2004)

  16. Eberlein, E., Özkan, F.: Time consistency of Lévy models. Quant. Finance 3(1), 40–50 (2003)

  17. Eberlein, E., Prause, K.: The generalized hyperbolic model: financial derivatives and risk measures. In: Geman, H., Madan, D., Pliska, S.R., Vorst, T. (eds.) Mathematical Finance—Bachelier Congress 2000: Selected Papers from the First World Congress of the Bachelier Finance Society, Paris, June 29–July 1, 2000, pp. 245–267. Springer, Berlin (2002)

  18. Eberlein, E., Keller, U., et al.: Hyperbolic distributions in finance. Bernoulli 1(3), 281–299 (1995)

  19. Figueroa-López, J.E., Lancette, S., Lee, K., Mi, Y.: Estimation of NIG and VG models for high frequency financial data. In: Viens, F., Mariani, M., Florescu, I. (eds.) Handbook of Modeling High-Frequency Data in Finance, vol. 4, pp. 3–26. Wiley, Hoboken (2011)

  20. Göncü, A., Karahan, M.O., Kuzubaş, T.U.: A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns. N. Am. J. Econ. Finance 36, 69–83 (2016)

  21. Gray, J.B., French, D.W.: Empirical comparisons of distributional models for stock index returns. J. Bus. Finance Acc. 17(3), 451–459 (1990)

  22. Grothe, O., Schmidt, R.: Scaling of Lévy-student processes. Phys. A Stat. Mech. Appl. 389(7), 1455–1463 (2010)

  23. Heyde, C.C., Leonenko, N.N.: Student processes. Adv. Appl. Probab. 37(2), 342–365 (2005)

  24. Kolmogorov, A.N.: Sulla Determinazione Empirica di una Legge di Distribuzione. Giornale dell’Istituto Italiano degli Attuari 4, 83–91 (1933)

  25. Liu, C., Rubin, D.B.: The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81(4), 633–648 (1994)

  26. Madan, D.B., Seneta, E.: The variance gamma (VG) model for share market returns. J. Bus. 63(4), 511–524 (1990)

  27. Mandelbrot, B.: Stable Paretian random functions and the multiplicative variation of income. Econometrica 29(4), 517–543 (1961)

  28. Mandelbrot, B.: The variation of some other speculative prices. J. Bus. 40(4), 393–413 (1967)

  29. Massing, T.: Local asymptotic normality for Student-Lévy processes under high-frequency sampling. Statistics 53(4), 721–752 (2019)

  30. Nadarajah, S., Afuecheta, E., Chan, S.: A note on ‘modelling exchange rate returns: which flexible distribution to use?’. Quant. Finance 15(11), 1777–1785 (2015)

  31. Nolan, J.P.: Maximum likelihood estimation and diagnostics for stable distributions. In: Barndorff-Nielsen, O.E., Resnick, S.I., Mikosch, T. (eds.) Lévy Processes: Theory and Applications, pp. 379–400. Birkhäuser, Boston (2001)

  32. Nolan, J.P.: Stable Distributions—Models for Heavy Tailed Data. Birkhauser, Boston (2018). In progress, Chapter 1 online. http://fs2.american.edu/jpnolan/www/stable/stable.html

  33. Omey, E., Gulck, S., Vesilo, R.: Semi-heavy tails. Working Paper (2017) https://www.researchgate.net/publication/319153506_Semi-heavy_tails

  34. Peiró, A.: The distribution of stock returns: international evidence. Appl. Financ. Econ. 4(6), 431–439 (1994)

  35. Praetz, P.D.: The distribution of share price changes. J. Bus. 45(1), 49–55 (1972)

  36. Prause, K.: Modelling financial data using generalized hyperbolic distributions. FDM preprint, Universität Freiburg, vol. 48 (1997). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.1199&rep=rep1&type=pdf

  37. Rachev, S., Kim, Y., Bianchi, M., Fabozzi, F.: Financial Models with Lévy Processes and Volatility Clustering, Frank J. Fabozzi Series. Wiley, London (2011)

  38. Razali, N.M., Wah, Y.B., et al.: Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. J. Stat. Model. Anal. 2(1), 21–33 (2011)

  39. Schoutens, W.: Meixner processes in finance. Eurandom Report 2001-002 (2001). https://www.eurandom.tue.nl/reports/2001/002-report.pdf

  40. Schoutens, W., Teugels, J.L.: Lévy processes, polynomials and martingales. Stoch. Models 14(1–2), 335–349 (1998)

  41. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

  42. Tankov, P., Cont, R.: Financial Modelling with Jump Processes, 2nd edn. Chapman and Hall, London (2015)

Download references

Acknowledgements

The author is grateful to Christoph Hanck, Yannick Hoga, Paul Navas Alban, and the anonymous reviewers for valuable comments that substantially improved the paper. Full responsibility is taken for all remaining errors.

Author information

Correspondence to Till Massing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Massing, T. What is the best Lévy model for stock indices? A comparative study with a view to time consistency. Financ Mark Portf Manag 33, 277–344 (2019). https://doi.org/10.1007/s11408-019-00335-2

Download citation

Keywords

  • Stock index returns
  • Generalized hyperbolic distribution
  • Time consistency
  • Goodness of fit

JEL Classification

  • C58
  • G15