Financial Markets and Portfolio Management

, Volume 29, Issue 4, pp 365–379 | Cite as

Liquidity-driven approach to dynamic asset allocation: evidence from the German stock market

  • Eduard BaitingerEmail author
  • Christian Fieberg
  • Thorsten Poddig
  • Armin Varmaz


Fluctuations in market-wide liquidity may offer opportunities of earning illiquidity premiums. For the US stock market, an investment strategy that profitably exploits these market-wide liquidity fluctuations is proposed by Xiong (J Portf Manag 39(3):102–111, 2013), who focus on an in-sample analysis. In this article, we firstly replicate the liquidity-driven investment strategy of Xiong (J Portf Manag 39(3):102–111, 2013) for the German stock market showing that a successful harvesting of illiquidity premiums is possible as well. Secondly, we extend the study design of Xiong (J Portf Manag 39(3):102–111, 2013) in that we conduct a strict out-of-sample analysis. Our results show that the initial superior in-sample results drastically deteriorate in an out-of-sample framework rendering the practical application of the liquidity-driven investment strategy for the German stock market impossible. Lastly, we modify the rather static investment methodology by a novel approach in which the asset allocation responds flexibly to market-wide liquidity fluctuations. This modification leads to significant performance improvements.


Dynamic asset allocation Liquidity Amihud illiquidity measure Liquidity risk Investment strategy  Out-of-sample study 

JEL Classification

G11 G12 C32 C53 



We have benefited from many helpful comments by an anonymous referee and the editorial team of FMPM. Armin Varmaz acknowledges financial support from the HSB research funds (Fund Number 81811308).


  1. Acharya, V.V., Pedersen, L.H.: Asset pricing with liquidity risk. J. Financ. Econ. 77(2), 375–410 (2005). doi:
  2. Amihud, Y., Mendelson, H.: Asset pricing and the bid-ask spread. J. Financ. Econ. 17(2), 223–249 (1986). doi:
  3. Amihud, Y.: Illiquidity and stock returns: cross-section and time-series effects. J. Financ. Mark. 5(1), 31–56 (2002). doi:
  4. Ang, A., Bekaert, G.: International asset allocation with regime shifts. Rev. Financ. Stud. 15(4), 1137–1187 (2002). doi: CrossRefGoogle Scholar
  5. Ang, A., Bekaert, G.: How regimes affect asset allocation. Financ. Anal. J. 60(2), 86–99 (2004)CrossRefGoogle Scholar
  6. Cavenaile, L., Gengenbach, C., Palm, F.: Stock markets, banks and long run economic growth: A panel cointegration-based analysis. Economist 162(1), 19–40 (2014). doi: CrossRefGoogle Scholar
  7. Chordia, T., Roll, R., Subrahmanyam, A.: Liquidity and market efficiency. J. Finan. Econ. 87(2), 249–268 (2008). doi:
  8. Croushore, D.: Forecasting with real-time data vintages. In: Clements, M.P., Hendry, D.F. (eds.) The Oxford Handbook of Economic Forecasting, pp. 248–267. Oxford University Press, Oxford (2011)Google Scholar
  9. Datar, V.T., Naik, N.Y., Radcliffe, R.: Liquidity and stock returns: an alternative test. J. Financ. Mark. 1(2), 203–219 (1998)CrossRefGoogle Scholar
  10. Elliott, R.J., Siu, T.K.: Robust optimal portfolio choice under markovian regime-switching model. Methodol. Comput. Appl. Probab. 11(2), 145–157 (2009). doi: CrossRefGoogle Scholar
  11. Guo, H.: Data revisions and out-of-sample stock return predictability. Econ. Inq. 47(1), 81–97 (2009)CrossRefGoogle Scholar
  12. Hodrick, R.J., Prescott, E.C.: Postwar US business cycles: an empirical investigation. J. Money Credit Bank. 29(1), 1–16 (1997)CrossRefGoogle Scholar
  13. Khandani, A.E., Lo, A.W.: Illiquidity premia in asset returns: an empirical analysis of hedge funds, mutual funds, and us equity portfolios. Q. J. Finance 1(2), 205–264 (2011)CrossRefGoogle Scholar
  14. Kritzman, M., Page, S., Turkington, D.: Regime shifts: implications for dynamic strategies. Financ. Anal. J. 68(3), 22–39 (2012)CrossRefGoogle Scholar
  15. Liang, S.X., Wei, J.K.: Liquidity risk and stock returns around the world. J. Bank. Finance 36(12):3274–3288 (2012). doi: (systemic risk, Basel III, global financial stability and regulation)
  16. Næs, R., Skjeltorp, J.A., Ødegaard, B.A.: Stock market liquidity and the business cycle. J. Finance 66(1), 139–176 (2011). doi: CrossRefGoogle Scholar
  17. Pástor, v, Stambaugh, R.F.: Liquidity risk and expected stock returns. J. Polit. Econ. 111(3), 642–685 (2003)CrossRefGoogle Scholar
  18. Pesaran, M.H., Timmermann, A.: Predictability of stock returns: robustness and economic significance. J. Finance 50(4), 1201–1228 (1995).
  19. Treynor, J., Mazuy, K.: Can mutual funds outguess the market. Harv. Bus. ßrev. 44(4), 131–136 (1966)Google Scholar
  20. Wang, P., Sullivan, R.N., Ge, Y.: Risk-based dynamic asset allocation with extreme tails and correlations. J. Portf. Manag. 38(4), 26–42 (2012)CrossRefGoogle Scholar
  21. Welch, I., Goyal, A.: A comprehensive look at the empirical performance of equity premium prediction. Rev. Financ. Stud. 21(4), 1455–1508 (2008)CrossRefGoogle Scholar
  22. Xiong, J.X., Sullivan, R.N., Wang, P.: Liquidity-driven dynamic asset allocation. J. Portf. Manag. 39(3), 102–111 (2013)CrossRefGoogle Scholar

Copyright information

© Swiss Society for Financial Market Research 2015

Authors and Affiliations

  • Eduard Baitinger
    • 1
    Email author
  • Christian Fieberg
    • 2
  • Thorsten Poddig
    • 2
  • Armin Varmaz
    • 3
  1. 1.FERI Trust GmbHBad Homburg v.d.HGermany
  2. 2.Chair of FinanceUniversity of BremenBremenGermany
  3. 3.Chair of International FinanceSchool of International BusinessBremenGermany

Personalised recommendations