Journal of Economic Interaction and Coordination

, Volume 11, Issue 2, pp 229–246 | Cite as

Phase transition in the S&P stock market

  • Matthias Raddant
  • Friedrich Wagner
Regular Article


We analyze the returns of stocks contained in the Standard & Poor’s 500 index from 1987 until 2011. We use covariance matrices of the firms’ returns determined in a time windows of several years. We find that the eigenvector belonging to the leading eigenvalue (the market) exhibits a phase transition. The market is in an ordered state from 1995 to 2005 and in a disordered state after 2005. We can relate this transition to an order parameter derived from the stocks’ beta and the trading volume. This order parameter can also be interpreted within an agent-based model.


Stock price correlations CAPM S&P500 


  1. Ahlgren N, Antell J (2010) Stock market linkages and financial contagion: a cobreaking analysis. Q Rev Econ Finance 50:157–166CrossRefGoogle Scholar
  2. Alfarano S, Lux T, Wagner F (2005) Estimation of agent-based models: the case of an asymmetric herding model. Comp Econ 26:19–49CrossRefGoogle Scholar
  3. Adcock CJ, Cortez MC, Rocha Armada MJ, Silva F (2012) Time varying betas and the unconditional distribution of asset returns. Quant Finance 12(6):951–967CrossRefGoogle Scholar
  4. Beine M, Candelon B (2011) Liberalization and stock market co-movement between emerging economies. Quant Finance 12(2):299312Google Scholar
  5. Black F, Jensen MC, Scholes M (1972) The capital asset pricing model: some empirical tests In: Jensen M (ed) Studies in the theory of capital markets. Praeger, New YorkGoogle Scholar
  6. Bos T, Newbold P (1984) An empirical investigation of the possibility of stochastic systemic risk in the market model. J Bus 57(1.1):35–41CrossRefGoogle Scholar
  7. Bodurtha JN, Mark NC (1991) Testing the CAPM with time-varying risk and returns. J Finance 46(4):1485–1505Google Scholar
  8. Bollerslev T, Engle R, Wooldridge J (1988) A capital asset pricing model with time-varying covariances. J Polit Econ 96(1):116–131Google Scholar
  9. Borland L, Hassid Y (2010) Market panic on different time-scales. arXiv:1010.4917v1
  10. Bornholdt S (2001) Expectation bubbles in a spin model of markets. Int J Mod Phys C 12:667–674CrossRefGoogle Scholar
  11. Brock WA, Hommes CH (1998) Heterogeneous beliefs and routes to chaos in a simple asset pricing model. J Econ Dyn Control 22:12351274CrossRefGoogle Scholar
  12. Burda Z, Görlich A, Jarosz A, Jurkiewicz J (2004) Signal and noise in correlation matrix. Phys A 343:295CrossRefGoogle Scholar
  13. Chiarella C, Dieci R, He X (2010) A framework for CAPM with heterogeneous beliefs. In: Bischi G-I, Chiarella C, Gardini L (eds) Nonlinear dynamics in economics, finance and social sciences: essays in honour of John Barkley Rosser Jr. Springer, BerlinGoogle Scholar
  14. Citeau P, Potters M, Bouchaud JP (2001) Correlation structure of extreme stock returns. Quant Finance 1:217–222CrossRefGoogle Scholar
  15. Cont R, Bouchaud JP (2000) Herd behaviour and aggregate fluctuations in financial markets. Macroecon Dyn 4:170CrossRefGoogle Scholar
  16. Cont R (2001) Empirical properties of asset returns: stylized facts and statistical issues. Quant Finance 1:223CrossRefGoogle Scholar
  17. Dichev ID, Huang K, Zhou D (2012) The dark side of trading. Emory law and economics research paper No. 11–95Google Scholar
  18. Fama EF, French KR (1992) The cross-section of expected stock returns. J Finance 47(2):427–465CrossRefGoogle Scholar
  19. Galluccio S, Bouchaud JP, Potters M (1998) Rational decisions, random matrices and spin glasses. Phys A 259:449–456CrossRefGoogle Scholar
  20. Harvey CJ, Siddique A (2000) Conditional skewness in asset pricing tests. J Finance LV(3):1263–1295CrossRefGoogle Scholar
  21. Kenett DY, Shapira Y, Madi A, Bransburg-Zabary S, Gur-Gershgoren G, Ben-Jacob E (2011) Index cohesive force analysis reveals that the US market became prone to systemic collapses since 2002. PLoS ONE 6(4):e19378CrossRefGoogle Scholar
  22. Kenett DY, Preis T, Gur-Gershgoren G, Ben-Jacob E (2012a) Dependency network and node influence: application to the study of financial markets. Int J Bifurc Chaos 22. doi: 10.1142/S0218127412501817
  23. Kenett DY, Raddant M, Lux T, Ben-Jacob E (2012b) Evolvement of uniformity and volatility in the stressed global financial village. PLoS ONE 7(2):e31144CrossRefGoogle Scholar
  24. Kirman A (1993) Ants, rationality and recruitment. Q J Econ 108:137–156CrossRefGoogle Scholar
  25. Laloux L, Cizeau P, Bouchaud JP, Potters M (1999) Noise dressing of financial correlation matrices. Phys Rev Lett 83:1467CrossRefGoogle Scholar
  26. Lintner J (1965) The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev Econ Stat 47:13–37CrossRefGoogle Scholar
  27. Livan G, Alfarano S, Scalas E (2011) Fine structure of spectral properties for random correlation matrices. Phys Rev E 84:016113CrossRefGoogle Scholar
  28. Livan G, Inoue J, Scalas E (2012) On the non-stationarity of financial time series: impact on optimal portfolio selection. JSTAT. doi: 10.1088/1742-5468/2012/07/P07025
  29. Lux T, Ausloos M (2002) Market fluctuations I: scaling, multi-scaling and their possible origins. In: Bunde A, Kopp J, Schellhuber H (eds) Theory of desaster. Springer, Berlin, p 373Google Scholar
  30. Marĉenko VA, Pastur LA (1967) Distribution of eigenvalues for some sets of random matrices. Sb Math 1:457CrossRefGoogle Scholar
  31. Messiah A (1967) Quantum mechanics volume I. North Holland, AmsterdamGoogle Scholar
  32. Münnix MC, Shimada T, Schäfer R, Leyvraz F, Seligman T, Guhr T, Stanley HE (2012) Identifying states of a financial market. Sci Rep 2(644).
  33. Pearson K (1885) Notes on regression and inheritance in the case of two parents. Proc R Soc Lond 58(240):242Google Scholar
  34. Plerou V et al (2002) Random matrix approach to cross correlations in financial data. Phys Rev E 65:066126CrossRefGoogle Scholar
  35. Preis T, Schneider JJ, Stanley HE (2011) Switching processes in financial markets. Proc Natl Acad Sci. doi: 10.1073/pnas.1019484108
  36. Sharpe W (1964) Capital asset prices: a theory of market equilibrium under conditions of risk. J Finance 19:425–442Google Scholar
  37. Stauffer D, Sornette D (1999) Self-organized percolation model for stock market fluctuation. Phys A 271:496–506CrossRefGoogle Scholar
  38. Tumminello M, Aste T, Di Matteo T, Mantegna RN (2005) A tool for filtering information in complex systems. Proc Natl Acad Sci USA 102(30):10421–10426CrossRefGoogle Scholar
  39. Wagner F (2006) Application of Zhangs square root law and herding to financial markets. Phys A 364:369–384CrossRefGoogle Scholar
  40. Wishart J (1928) The generalized product moment distribution in samples from a normal multivariate population. Biometrica 20A(1928):32–52CrossRefGoogle Scholar
  41. Wu FY (1982) The Potts model. Rev Mod Phys 54(1):235268CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute for the World EconomyKielGermany
  2. 2.Institut für VolkswirtschaftslehreUniversität KielKielGermany
  3. 3.Institut für Theoretische Physik und AstrophysikUniversität KielKielGermany

Personalised recommendations