Skip to main content

Advertisement

Log in

An agent-based model of innovation diffusion: network structure and coexistence under different information regimes

  • Regular Article
  • Published:
Journal of Economic Interaction and Coordination Aims and scope Submit manuscript

Abstract

The paper analyzes how the structure of social networks affects innovation diffusion and competition under different information regimes. Diffusion is modeled as the result of idiosyncratic adoption thresholds, local network effects and information diffusion (broadcasting and demonstration effect from previous adopters). A high social cohesion decreases the probability of one innovation cornering the market. Nonetheless, with imperfect information, in small-world networks the higher speed of diffusion produced by the low average distance increases this probability. A low social cohesion also increases the probability of falling into traps of under-adoption. However, such probability is significantly lower with imperfect information, because such regime is characterized by higher levels of market concentrations and this reduces the frictions due to the coexistence of non-compatible product innovations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson E, Rosenkopf L (1997) Social network effects on the extent of innovation diffusion: a computer simulation. Organ Sci 8(3): 289–309

    Article  Google Scholar 

  • Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1): 47–97

    Article  Google Scholar 

  • Arenas A, Díaz-Guilera A, Perez CJ, Vega-Redondo F (2002) Self-organized criticality in evolutionary systems with local interaction. J Econ Dyn Control 26(12): 2115–2142

    Article  Google Scholar 

  • Arthur BW (1989) Competing technologies, increasing returns, and lock-in by historical events. Econ J 99(394): 116–131

    Article  Google Scholar 

  • Banerji A, Dutta B (2009) Local network externalities and market segmentation. Int J Ind Organ 27(5): 605–614

    Article  Google Scholar 

  • Bass FM (1969) A new product growth for model consumer durables. Manag Sci 15(5): 215–227

    Article  Google Scholar 

  • Bass FM (2004) Comments on “a new product growth for model consumer durables”: the Bass model. Manag Sci 50(12): 1833–1840

    Article  Google Scholar 

  • Bemmaor AC, Lee J (2002) The impact of heterogeneity and ill-conditioning on diffusion model parameter estimates. Mark Sci 21(2): 209–220

    Article  Google Scholar 

  • Bollobás B, Riordan OM (2003) Mathematical results on scale-free random graphs. In: Bornholdt S, Schuster HG (eds) Handbook of graphs and networks from the genome to the internet. Wiley-VCH, Weinheim, pp 1–34

    Google Scholar 

  • Boyd DM, Ellison NB (2008) Social network sites: definition, history, and scholarship. J Computer-Mediat Commun 13(1): 210–230

    Article  Google Scholar 

  • Bramoullé Y, Kranton R (2007) Risk sharing across communities. Am Econ Rev 97(2): 70–74

    Article  Google Scholar 

  • Cecere G, Corrocher N (2011) The intensity of VoIP usage in Great Britain: users’ characteristics and firms’ strategies. Telecommun Policy 35(6): 522–531

    Article  Google Scholar 

  • Chatterjee R, Eliashberg J (1990) The innovation diffusion process in a heterogeneous population: a micromodeling approach. Manag Sci 36(9): 1057–1079

    Article  Google Scholar 

  • Choi H, Kim S-H, Lee J (2010) Role of network structure and network effects in diffusion of innovations. Ind Mark Manag 39(1): 170–177

    Article  Google Scholar 

  • Cowan R, Jonard N (2003) The dynamics of collective invention. J Econ Behav Organ 52(4): 513–532

    Article  Google Scholar 

  • Cowan R, Jonard N (2004) Network structure and the diffusion of knowledge. J Econ Dyn Control 28(8): 1557–1575

    Article  Google Scholar 

  • Cowan R, Miller JH (1998) Technological standards with local externalities and decentralized behaviour. J Evol Econ 8(3): 285–296

    Article  Google Scholar 

  • Crutchfield JP, Mitchell M (1995) The evolution of emergent computation. Proc Natl Acad Sci 92(23): 10742–10746

    Article  Google Scholar 

  • Dalle JM (1997) Heterogeneity vs. externalities in technological competition: a tale of possible technological landscapes. J Evol Econ 7(4): 395–413

    Article  Google Scholar 

  • Delre SA, Jager W, Janssen MA (2007) Diffusion dynamics in small-world networks with heterogeneous consumers. Comput Math Organ Theory 13(2): 185–202

    Article  Google Scholar 

  • Delre SA, Jager W, Bijmolt THA, Janssen MA (2007) Targeting and timing promotional activities: an agent-based model for the takeoff of new products. J Bus Res 60(8): 826–835

    Article  Google Scholar 

  • Delre SA, Jager W, Bijmolt THA, Janssen MA (2010) Will it spread or not? The effects of social influences and network topology on innovation diffusion. J Prod Innov Manag 27(2): 267–282

    Article  Google Scholar 

  • Frenken K, Silverberg G, Valente M (2008) A percolation model of the product life cycle. Working paper series 73, UNU-Merit

  • Geroski PA (2000) Models of technology diffusion. Res Policy 29(4-5): 603–625

    Article  Google Scholar 

  • Golub B, Jackson MO (2010) Naïve learning in social networks: convergence, influence, and the wisdom of crowds. Am Econ J Microecon 2(1): 112–149

    Article  Google Scholar 

  • Goyal S (2007) Connections: an introduction to the economics of networks. Princeton University Press, Princeton

    Google Scholar 

  • Goyal S, Janssen MCW (1997) Non-exclusive conventions and social coordination. J Econ Theory 77(1): 34–57

    Article  Google Scholar 

  • Goyal S, Moraga-Gonzalez JL (2001) R&D networks. RAND J Econ 32(4): 686–707

    Article  Google Scholar 

  • Hohnisch M, Pittnauer S, Stauffer D (2008) A percolation-based model explaining delayed takeoff in new-product diffusion. Ind Corp Change 17(5): 1001–1017

    Article  Google Scholar 

  • Jackson MO (2008) Social and economic networks. Princeton University Press, Princeton

    Google Scholar 

  • Janssen MA, Jager W (2003) Simulating market dynamics: interactions between consumer psychology and social networks. Artif Life 9(4): 343–356

    Article  Google Scholar 

  • Karshenas M, Stoneman P (1995) Technological diffusion. In: Stoneman P (eds) Handbook of the economics of innovation and technical change. Blackwell, Oxford

    Google Scholar 

  • Katz ML, Shapiro C (1985) Network externalities, competition, and compatibility. Am Econ Rev 75(3): 424–440

    Google Scholar 

  • Krishnamurthy S (2003) A managerial overview of open source software. Bus Horiz 46(5): 47–56

    Article  Google Scholar 

  • Lee E, Lee J, Lee J (2006) Reconsideration of the winner-take-all hypothesis: complex networks and local bias. Manag Sci 52(12): 1838–1848

    Article  Google Scholar 

  • López-Pintado D (2008) Diffusion in complex social networks. Games Econ Behav 62(2): 573–590

    Article  Google Scholar 

  • Mahdian M, Kleinberg J, Immorlica N, Wexler T (2007) The role of compatibility in the diffusion of technologies through social networks. In: Proceedings 8th ACM conference on electronic commerce

  • Mitchell M, Crutchfield JP, Hraber PT (1994) Evolving cellular automata to perform computations: mechanisms and impediments. Phys D Nonlinear Phenom 75(1-3): 361–391

    Article  Google Scholar 

  • Morris S (2000) Contagion. Rev Econ Stud 67(1): 57–78

    Article  Google Scholar 

  • Morrison A (2008) Gatekeepers of knowledge within industrial districts: who they are how they interact. Reg Stud 42: 817–835

    Article  Google Scholar 

  • Mustafa N, Pekec̆ A (2001) Majority consensus and the local majority rule. In: Orejas F, Spirakis P, van Leeuwen J (eds) Automata, languages and programming, Lecture notes in computer science, vol 2076.. Springer, Berlin, pp 530–542

    Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2): 167–256

    Article  Google Scholar 

  • Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46(5): 323–351

    Article  Google Scholar 

  • Ren W, Beard RW, Atkins EM (2005) A survey of consensus problems in multi-agent coordination. In: Proceedings of the 2005 American control conference, 2005, vol 3, pp 1859–1864

  • Rogers EM (2003) Diffusion of innovation. Free Press, New York

    Google Scholar 

  • Swann GM (2002) The functional form of network effects. Inf Econ Policy 14(3): 417–429

    Article  Google Scholar 

  • Tahbaz-Salehi A, Jadbabaie A (2008) A necessary and sufficient condition for consensus over random networks. IEEE Trans Autom Control 53(3): 791–795

    Article  Google Scholar 

  • Uchida M, Shirayama S (2008) Influence of a network structure on the network effect in the communication service market. Phys A Stat Mech Appl 387(21): 5303–5310

    Article  Google Scholar 

  • Uzzi B, Amaral LAN, Reed-Tsochas F (2007) Small-world networks and management science research: a review. Eur Manag Rev 4(2): 77–91

    Article  Google Scholar 

  • Valente TW (2005) Network models and methods for studying the diffusion of innovation. In: Carrington PJ, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, Cambridge, pp 98–116

    Chapter  Google Scholar 

  • Vega-Redondo F (2007) Complex social networks. Cambridge University Press, Cambridge

    Google Scholar 

  • Watts DJ (2003) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, Princeton

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393: 440–442

    Article  Google Scholar 

  • Young HP (2009) Innovation diffusion in heterogeneous populations: contagion, social influence, and social learning. Am Econ Rev 99(5): 1899–1924

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Rentocchini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pegoretti, G., Rentocchini, F. & Vittucci Marzetti, G. An agent-based model of innovation diffusion: network structure and coexistence under different information regimes. J Econ Interact Coord 7, 145–165 (2012). https://doi.org/10.1007/s11403-012-0087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11403-012-0087-4

Keywords

Navigation