Skip to main content
Log in

A Theory of Orbit Braids

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

In this paper, the authors systematically discuss orbit braids in M × I with regards to orbit configuration space FG(M, n), where M is a connected topological manifold of dimension at least 2 with an effective action of a finite group G. These orbit braids form a group, named orbit braid group, which enriches the theory of ordinary braids.

The authors analyze the substantial relations among various braid groups associated to those configuration spaces FG(M, n), F(M/G, n) and F(M, n). They also consider the presentations of orbit braid groups in terms of orbit braids as generators by choosing M = ℂ with typical actions of ℤp and (ℤ2)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Allcock, D. and Basak, T., Geometric generators for braid-like groups, Geom. Topol., 20, 2016, 747–778.

    Article  MathSciNet  MATH  Google Scholar 

  2. Allcock, D. and Basak, T., Generators for a complex hyperbolic braid group, Geom. Topol., 22(6), 2018, 3435–3500.

    Article  MathSciNet  MATH  Google Scholar 

  3. Artin, E., Theorie der Zöpfe, Ahb. Math. Sem. Univ. Hamburg, 4, 1925, 47–72.

    Article  MATH  Google Scholar 

  4. Artin, E., Theory of braids, Ann. of Math., 48, 1947, 101–126.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bibby, C. and Gadish, N., Combinatorics of orbit configuration spaces, 2018, arXiv:1804.06863.

  6. Birman, J. S., Braids, Links, and Mapping Class Groups, Princeton Univ. Press, Princeton, NJ, 1974.

    Google Scholar 

  7. Bredon, G. E., Intrduction to compact transformation groups, Pure and Applied Mathematics, 46, Academic Press, New York, London, 1972.

    MATH  Google Scholar 

  8. Brieskorn, E., Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math., 12, 1971, 57–61.

    Article  MathSciNet  MATH  Google Scholar 

  9. Brieskorn, E., Sur les groupes de tresses (d’apräs V.I. Arnol’d), Séminaire Bourbaki, 24ème année (1971/1972), Lecture Notes in Math., 317, 1973, 21–44.

    Article  Google Scholar 

  10. Chen, J. D., Lä, Z. and Wu, J., Orbit configuration spaces of small covers and quasi-toric manifolds, Science China Mathematics., 64(1), 2021, 167–196.

    Article  MathSciNet  MATH  Google Scholar 

  11. Chow, W. L., On the algebraical braid group, Ann. of Math., 49, 1948, 654–658.

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis, M. and Januszkiewicz, T., Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., 61, 1991, 417–451.

    MathSciNet  MATH  Google Scholar 

  13. Deligne, P., Les immeubles des groupes de tresses généralisés, Invent. Math., 17, 1972, 273–302.

    Article  MathSciNet  MATH  Google Scholar 

  14. Fadell, E. and Neuwirth, L., Configuration spaces, Math. Scand., 10, 1962, 111–118.

    Article  MathSciNet  MATH  Google Scholar 

  15. Fox, R. and Neuwirth, L., The braid groups, Math. Scand., 10, 1962, 119–126.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fricke, R. and Klein, F., Vorlesungen über die Theorie der automorphen Funktionen, Bd. I. Gruppentheoretischen Grundlagen, Teubner, Leipzig, 1897, Johnson, New York, 1965.

    Google Scholar 

  17. Goryunov, V. V., The cohomology of braid groups of series C and D, Trudy Moskov. Mat. Obshch., 42, 1981, 234–242.

    MathSciNet  Google Scholar 

  18. Hurwitz, A., Über Riemannsche Flächen mit gegebenen Verzweigungspunkten, Math. Ann., 39(1), 1891, 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  19. Looijenga, E., Artin groups and the fundamental groups of some moduli spaces, J. Topol., 1(1), 2008, 187–216.

    Article  MathSciNet  MATH  Google Scholar 

  20. Randell, R., The fundamental group of the complement of a union of complex hyperplanes: Correction, Invent. math., 80, 1985, 467–468.

    Article  MathSciNet  MATH  Google Scholar 

  21. Rhodes, F., On the fundamental group of a transformation group, Proceedings of the London Mathematical Society, 3(1), 1966, 635–650.

    Article  MathSciNet  MATH  Google Scholar 

  22. Switzer, R. M., Algebraic Topology—Homotopy and Homology, Springer-Verlag, New York, Heidelberg, 1975.

    Book  MATH  Google Scholar 

  23. Vershinin, V. V., Braid groups and loop spaces, Russian Mathematical Surveys, 54, 1999, 273–350.

    Article  MathSciNet  MATH  Google Scholar 

  24. Xicoténcatl, M. A., m Orbit configuration spaces, infinitesimal braid relations in homology and equivariant loop spaces, Thesis (Ph.D.), University of Rochester, Rochester, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Li.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11971112).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Li, H. & Lü, Z. A Theory of Orbit Braids. Chin. Ann. Math. Ser. B 44, 165–192 (2023). https://doi.org/10.1007/s11401-023-0009-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-023-0009-x

Keywords

2000 MR Subject Classification

Navigation