Skip to main content
Log in

Willmore Surfaces in Spheres via Loop Groups IV: On Totally Isotropic Willmore Two-Spheres in S6

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

In this paper the author derives a geometric characterization of totally isotropic Willmore two-spheres in S6, which also yields to a description of such surfaces in terms of the loop group language. Moreover, applying the loop group method, he also obtains an algorithm to construct totally isotropic Willmore two-spheres in S6. This allows him to derive new examples of geometric interests. He first obtains a new, totally isotropic Willmore two-sphere which is not S-Willmore (i.e., has no dual surface) in S6. This gives a negative answer to an open problem of Ejiri in 1988. In this way he also derives many new totally isotropic, branched Willmore two-spheres which are not S-Willmore in S6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernard, Y. and Rivière, T., Singularity removability at branch points for Willmore surfaces, Pacific J. Math., 265(2), 2013, 257–311.

    Article  MathSciNet  Google Scholar 

  2. Bohle, C., Constrained Willmore tori in the 4-sphere, J. Differ. Geom., 86(1), 2010, 71–132.

    Article  MathSciNet  Google Scholar 

  3. Brander, D., Rossman, W. and Schmitt, N., Holomorphic representation of constant mean curvature surfaces in Minkowski space: Consequences of non-compactness in loop group methods, Adv. Math., 223(3), 2010, 949–986.

    Article  MathSciNet  Google Scholar 

  4. Bryant, R., Conformal and minimal immersions of compact surfaces into the 4-sphere, J. Diff. Geom., 17, 1982, 455–473.

    MathSciNet  MATH  Google Scholar 

  5. Bryant, R., A duality theorem for Willmore surfaces, J. Diff. Geom., 20, 1984, 23–53.

    MathSciNet  MATH  Google Scholar 

  6. Bryant, R., Surfaces in conformal geometry, Proceedings of Symposia in Pure Mathematics, 48, 1988, 227–240.

    Article  MathSciNet  Google Scholar 

  7. Burstall, F., Ferus, D., Leschke, K., et. al., Conformal Geometry of Surfaces in S4 and Quaternions, Lecture Notes in Mathematics, 1772, Springer-Verleg, Berlin, 2002.

    Book  Google Scholar 

  8. Burstall, F. and Guest, M., Harmonic two-spheres in compact symmetric spaces, revisited, Math. Ann., 309, 1997, 541–572.

    Article  MathSciNet  Google Scholar 

  9. Burstall, F., Pedit, F. and Pinkall, U., Schwarzian Derivatives and Flows of Surfaces, Contemporary Mathematics, 308, Providence, RI: Amer. Math. Soc., 2002, 39–61.

    MATH  Google Scholar 

  10. Burstall, F. and Rawnsley, J. H., Twistor Theory for Riemannian Symmetric Spaces: With Applications to Harmonic Maps of Riemann Surfaces, Lecture Notes in Mathematics, 1424, Springer-Verleg, Berlin, 1990.

    Book  Google Scholar 

  11. Calabi, E., Minimal immersions of surfaces in Euclidean spheres, J. Diff. Geom., 1, 1967, 111–125.

    MathSciNet  MATH  Google Scholar 

  12. Chen, J. and Li, Y., Bubble tree of branched conformal immersions and applications to the Willmore functional, Amer. J. Math., 136(4), 2014, 1107–1154.

    Article  MathSciNet  Google Scholar 

  13. Clancey, K. and Gohberg, I., Factorization of Matrix Functions and Singular Integral Operators, Birkhäuser, 1981.

  14. Correia, N. and Pacheco, R., Harmonic maps of finite uniton number into G2, Math. Z., 271(1–2), 2012, 13–32.

    Article  MathSciNet  Google Scholar 

  15. Dorfmeister, J., Pedit, F. and Wu, H., Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom., 6, 1998, 633–668.

    Article  MathSciNet  Google Scholar 

  16. Dorfmeister, J. and Wang, P., Willmore surfaces in spheres via loop groups I: Generic cases and some examples, arXiv:1301.2756, 2013.

  17. Dorfmeister, J. F. and Wang, P., Willmore surfaces in spheres: The DPW approach via the conformal Gauss map, Abh. Math. Semin. Univ. Hambg, 89(1), 2019, 77–103.

    Article  MathSciNet  Google Scholar 

  18. Dorfmeister, J. and Wang, P., Harmonic maps of finite uniton type into non-compact inner symmetric spaces, arXiv:1305.2514, 2013.

  19. Guest, M., An update on Harmonic maps of finite uniton number, via the Zero Curvature Equation, Integrable Systems, Topology, and Physics, A Conference on Integrable Systems in Differential Geometry Contemp. Math., 309, M. Guest et al., eds., Amer. Math. Soc., Providence, R. I., 2002, 85–113.

  20. Ejiri, N., Willmore surfaces with a duality in Sn(1), Proc. London Math. Soc. (3), 57(2), 1988, 383–416.

    Article  MathSciNet  Google Scholar 

  21. Ferreira, M. J, Simões, B. A. and Wood, J. C., All harmonic 2-spheres in the unitary group, completely explicitly, Math. Z., 266(4), 2010, 953–978.

    Article  MathSciNet  Google Scholar 

  22. Hélein, F. Willmore immersions and loop groups, J. Differ. Geom., 50, 1998, 331–385.

    Article  MathSciNet  Google Scholar 

  23. Kellersch, P., Eine Verallgemeinerung der Iwasawa Zerlegung in Loop Gruppen, volume 4 of DGDS, Differential Geometry-Dynamical Systems, Monographs, Geometry Balkan Press, Bucharest, 2004. Dissertation, Technische Universität München, 1999, http://vectron.mathem.pub.ro/dgds/mono/dgdsmono.htm.

  24. Kuwert, E. and Schätzle, R., Branch points of Willmore surfaces, Duke Math. J., 138, 2007, 179–201.

    Article  MathSciNet  Google Scholar 

  25. Lamm, T. and Nguyen, H. T., Branched willmore spheres, J. Reine Angew. Math., 2015(701), 2015, 169–194.

    MathSciNet  MATH  Google Scholar 

  26. Ma, X., Willmore Surfaces in Sn: Transforms and Vanishing Theorems, Dissertation, TU Berlin, 2005.

  27. Ma, X., Adjoint transforms of Willmore surfaces in Sn, Manuscripta Math., 120, 2006, 163–179.

    Article  MathSciNet  Google Scholar 

  28. Montiel, S., Willmore two spheres in the four-sphere, Trans. Amer. Math. Soc., 352(10), 2000, 4469–4486.

    Article  MathSciNet  Google Scholar 

  29. Musso, E., Willmore surfaces in the four-sphere, Ann. Global Anal. Geom., 8(1), 1990, 21–41.

    Article  MathSciNet  Google Scholar 

  30. Pressley, A. and Segal, G., Loop Groups, Oxford Mathematical Monographs, Oxford Science Publications, The charendon Press, Oxford University Press, New York, 1986.

    MATH  Google Scholar 

  31. Segal, G., Loop groups and harmonic maps, LMS Lecture Notes Ser., 139, 1989, 153–164.

    MathSciNet  MATH  Google Scholar 

  32. Svensson, M. and Wood, J. C., Filtrations, factorizations and explicit formulae for harmonic maps, Communications in Math. Phys., 310(1), 2012, 99–134.

    Article  MathSciNet  Google Scholar 

  33. Uhlenbeck, K., Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom., 30, 1989, 1–50.

    MathSciNet  MATH  Google Scholar 

  34. Wang, P., Willmore surfaces in spheres via loop groups II: A coarse classification of Willmore two-spheres by potentials, arXiv:1412.6737, 2014.

  35. Wood, J. C., Explicit construction and parametrization of harmonic two-spheres in the unitary group, Proc. Lond. Math. Soc., 58(3), 1989, 608–624.

    Article  MathSciNet  Google Scholar 

  36. Wu, H. Y., A simple way for determining the normalized potentials for harmonic maps, Ann. Global Anal. Geom., 17, 1999, 189–199.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The author is thankful to Professor Josef Dorfmeister, Professor Changping Wang and Professor Xiang Ma for their suggestions and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11971107, 11571255).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P. Willmore Surfaces in Spheres via Loop Groups IV: On Totally Isotropic Willmore Two-Spheres in S6. Chin. Ann. Math. Ser. B 42, 383–408 (2021). https://doi.org/10.1007/s11401-021-0265-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-021-0265-6

Keywords

2000 MR Subject Classification

Navigation