Abstract
In this paper the authors consider the bundle of affinor frames over a smooth manifold, define the Sasaki metric on this bundle, and investigate the Levi-Civita connection of Sasaki metric. Also the authors determine the horizontal lifts of symmetric linear connection from a manifold to the bundle of affinor frames and study the geodesic curves corresponding to the horizontal lift of the linear connection.
This is a preview of subscription content, access via your institution.
References
Aso, K., Notes on some properties of the sectional curvature of the tangent bundle, Yakohama Math. J., 29(3), 1981, 1–5.
Cordero, L. A. and de Leon, M., Horizontal lift of connection to the frame bundle, Boll. Un. Mat. Ital., 6, 1984, 223–240.
Fattayev, H. D., Transfer of some differential geometric structures from (1, 1)- tensor bundle to the (0, 2)-tensor bundle over a Riemannian manifold, Trans. of NAS of Azerbaijan, Issue Math., Ser. of Phys. Tech. and Math. Sciences, 38(1), 2018, 52–61.
Fattayev, H. D., Some problems of differential geometry of the bundle of affinor frames, News of Baku Univ., Ser. of Physico-Math. Sciences, (3), 2018, 45–57.
Fattayev, H. D. and Salimov, A. A., Diagonal lifts of metrics to coframe bundle, Proc. of IMM of NAS of Azerbaijan, 44(2), 2018, 328–337.
Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of Riemannian manifold, J. Reine Angew. Math., 250, 1971, 124–129.
Kowalski, O. and Sekizawa, M., On curvatures of linear frame bundle with naturally lifted metrics, Rend. Sem. Mat. Univ. Pol. Torino, 63, 2005, 283–296.
Kurek, J., On a horizontal lift of a linear connection to the bundle of linear frames, Ann. Univ. Marie Curie-Skladowska. Sectio A, XLI, 1987, 31–37.
Mok, K. P., Metrics and connections on the cotangent bundle, Kodai Math. Sem. Rep., 28, 1977, 226–238.
Mok, K. P., On the differential geometry of frame bundles of Riemannian manifolds, J. Reine Angew. Math., 302, 1978, 16–31.
Musso, E. and Tricerri, F., Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl., 150, 1988, 1–20.
Salimov, A. A. and Cengiz, N., Lifting of Riemannian metrics to tensor bundles, Russian Math. (Iz. Vuz.), 47(11), 2003, 47–55.
Salimov, A. A. and Agca, F., Some properties of Sasakian metrics in cotangent bundles, Mediterr. J. Math., 8, 2011, 243–255.
Salimov, A. A. and Gezer, A., On the geometry of the (1, 1)-tensor bundle with Sasaki type metric, Chin. Ann. Math., 32, 2011, 1–18.
Salimov, A. A., Gezer, A. and Akbulut, K., Geodesics of Sasakian metrics on tensor bundles, Mediterr. J. Math., 6(2), 2009, 137–149.
Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10, 1958, 338–354.
Yano, K. and Ishihara, S., Horizontal lifts of tensor fields and connections to tangent bundles, Math. and Mech., 16, 1967, 1015–1030.
Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marsel Dekker, Inc., New York, 1973.
Yano, K. and Patterson, E. M., Horizontal lift from a manifold to its cotangent bundle, J. Math. Soc. Japan, 19, 1967, 185–198.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fattayev, H., Salimov, A. Metrics and Connections on the Bundle of Affinor Frames. Chin. Ann. Math. Ser. B 42, 121–134 (2021). https://doi.org/10.1007/s11401-021-0248-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11401-021-0248-7
Keywords
- Bundle of affinor frames
- Riemannian manifold
- Sasaki metric
- Horizontal lift
- Geodesic curve
2000 MR Subject Classification
- 53C05
- 53B20