Abstract
Quillen proved that repeated multiplication of the standard sesquilinear form to a positive Hermitian bihomogeneous polynomial eventually results in a sum of Hermitian squares, which was the first Hermitian analogue of Hilbert’s seventeenth problem in the nondegenerate case. Later Catlin-D’Angelo generalized this positivstellensatz of Quillen to the case of Hermitian algebraic functions on holomorphic line bundles over compact complex manifolds by proving the eventual positivity of an associated integral operator. The arguments of Catlin-D’Angelo involve subtle asymptotic estimates of the Bergman kernel. In this article, the authors give an elementary and geometric proof of the eventual positivity of this integral operator, thereby yielding another proof of the corresponding positivstellensatz.
This is a preview of subscription content, access via your institution.
References
- [1]
Artin, E., Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5, 1927, 100–115.
- [2]
Berman, R., Berndtsson, B. and Sjöstrand, J., A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat., 46, 2008, 197–217.
- [3]
Bochner, S., Curvature in Hermitian metric, Bull. Amer. Math. Soc., 53, 1947, 179–195.
- [4]
Calabi, E., Isometric imbedding of complex manifolds, Ann. of Math. (2), 58, 1953, 1–23.
- [5]
Catlin, D., The Bergman kernel and a theorem of Tian, Analysis and Geometry in Several Complex Variables (Katata, 1997), Trends Math., Birkhöuser Boston, Boston, MA, 1999, 1–23.
- [6]
Catlin, D. and D’Angelo, J., Positivity conditions for bihomogeneous polynomials, Math. Res. Lett., 4, 1997, 555–567.
- [7]
Catlin, D. and D’Angelo, J., An isometric imbedding theorem for holomorphic bundles, Math. Res. Lett., 6, 1999, 43–60.
- [8]
Choi, M. D., Lam, T. Y., Prestel, A. and Reznick, B., Sums of 2mth powers of rational functions in one variable over real closed fields, Math. Z., 221, 1996, 93–112.
- [9]
D’Angelo, J. and Varolin, D., Positivity conditions for Hermitian symmetric functions, Asian J. Math., 8, 2004, 215–232.
- [10]
Drouot, A. and Zworski, M., A quantitative of verson of Catlin-D’Angelo-Quillen theorem, Anal. Math. Phys., 3, 2013, 1–19.
- [11]
Quillen, D. G., On the representation of Hermitian forms as sums of squares, Invent. Math., 5, 1968, 237–242.
- [12]
Reznick, B., Uniform denominators in Hilbert’s seventeenth problem, Math. Z., 220, 1995, 75–97.
- [13]
Tan, C., Eventual positivity of Hermitian polynomials and integral operators, Chin. Ann. Math. Ser. B, 37(1), 2016, 83–94.
- [14]
Tan, C. and To, W.-K., Effective geometric Hermitian positivstellensatz, J. Geom. Anal., 2020, https://doi.org/10.1007/s12220-019-00334-9.
- [15]
To, W.-K. and Yeung, S.-K., Effective isometric embeddings for certain Hermitian holomorphic line bundles, J. London Math. Soc., 73, 2006, 607–624.
- [16]
Varolin, D., Geometry of Hermitian algebraic functions. Quotients of squared norms, Amer. J. Math., 130, 2008, 291–315.
Author information
Affiliations
Corresponding authors
Additional information
This work was partially supported by the Singapore Ministry of Education Academic Research Fund Tier 1 grant R-146-000-142-112.
Rights and permissions
About this article
Cite this article
Tan, C., To, WK. Eventual Positivity of Hermitian Algebraic Functions and Associated Integral Operators. Chin. Ann. Math. Ser. B 41, 967–988 (2020). https://doi.org/10.1007/s11401-020-0241-6
Received:
Revised:
Published:
Issue Date:
Keywords
- Hermitian algebraic functions
- Integral operators
- Positivity
2010 MR Subject Classification
- 32L05
- 32A26
- 32H02