The Structure of Vector Bundles on Non-primary Hopf Manifolds


Let X be a Hopf manifold with non-Abelian fundamental group and E be a holomorphic vector bundle over X, with trivial pull-back to ℂn − {0}. The authors show that there exists a line bundle L over X such that EL has a nowhere vanishing section. It is proved that in case dim(X) ≥ 3, π*(E) is trivial if and only if E is filtrable by vector bundles. With the structure theorem, the authors get the cohomology dimension of holomorphic bundle E over X with trivial pull-back and the vanishing of Chern class of E.

This is a preview of subscription content, access via your institution.


  1. [1]

    Brînzănescu, V., Holomorphic Vector Bundles Over Compact Complex Surfaces, Lecture Notes in Mathematics, 1624, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  2. [2]

    Teleman, A., The pseudo-effective cone of a non-Kahlerian surface and applications, Math. Ann., 335(4), 2006, 965–989.

    MathSciNet  Article  Google Scholar 

  3. [3]

    Demailly, J., Peternell, T. and Schneider, M., Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom., 3(2), 1994, 295–345.

    MathSciNet  MATH  Google Scholar 

  4. [4]

    Ise, M., On the geometry of Hopf manifolds, Osaka Math. J., 12, 1960, 387–402.

    MathSciNet  MATH  Google Scholar 

  5. [5]

    Kodaira, K., On the structure of compact complex analytic surfaces II, American Journal of Mathematics, 88(3), 1966, 682–721.

    MathSciNet  Article  Google Scholar 

  6. [6]

    Barth, W., Hulek, K., Peters, C. and A. Van de Ven., Compact Complex Surfaces, 2nd ed., Springer-Verlag, Berlin, 2004.

    Google Scholar 

  7. [7]

    Wehler, J., Versal deformation of Hopf surfaces, J. Reine. angew. Math., 328, 1981, 22–32.

    MathSciNet  MATH  Google Scholar 

  8. [8]

    Levenberg, N. and Yamaguchi, H., Pseudoconvex domains in the Hopf surface, J. Math. Soc. Japan, 67(1), 2015, 231–273.

    MathSciNet  Article  Google Scholar 

  9. [9]

    Mall, D., On holomorphic vector bundle on Hopf Manifolds with pullback on the universal covering, Math. Ann., 294, 1992, 719–740.

    MathSciNet  Article  Google Scholar 

  10. [10]

    Liu, W. M. and Zhou, X. Y., Holomorphic vector bundles on Hopf manifolds, Acta Mathematica Sinica, 20(4), 2004, 605–612.

    MathSciNet  MATH  Google Scholar 

  11. [11]

    Zhou, X. Y., A remark on the Douady sequence for non-primary Hopf manifolds, Asian. J. Math., 8(1), 2004, 131–136.

    MathSciNet  Article  Google Scholar 

  12. [12]

    Zhou, X. Y., Some results about holomorphic vector bundles over general Hopf manifolds, Sci. China, Ser. A., 52(12), 2009, 2863–2866.

    MathSciNet  Article  Google Scholar 

  13. [13]

    Gan, N. and Zhou, X. Y., The cohomology of line bundles on non-primary Hopf manifolds, Acta Math. Sin. (Engl. Ser.), 23(2), 2007, 289–296.

    MathSciNet  Article  Google Scholar 

  14. [14]

    Gan, N. and Zhou, X. Y., The cohomology of vector bundles on general non-primary Hopf manifolds, Recent Progress on Some Problems in Several Complex Variables and Partial Differential Equations, Contemp. Math., 400, Amer. Math. Soc., Providence, RI, 2006, 107–115.

    Google Scholar 

  15. [15]

    Grauert, H. and Remmert, R., Coherent Analytic Sheaves, Springer-Verlag, Berlin, Heidelberg, New York, 1984.

    Google Scholar 

  16. [16]

    Haefliger, A., Deformation of transversely holomorphic flows on spheres and deformation of Hopf Manifolds, Compositio Math., 55, 1985, 241–251.

    MathSciNet  MATH  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Ning Gan or Xiangyu Zhou.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11671330, 11688101, 11431013).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gan, N., Zhou, X. The Structure of Vector Bundles on Non-primary Hopf Manifolds. Chin. Ann. Math. Ser. B 41, 929–938 (2020).

Download citation


  • Hopf manifolds
  • Holomorphic vector bundles
  • Exact sequence
  • Cohomology
  • Filtration
  • Chern class

2000 MR Subject Classification

  • 32L05
  • 32L10
  • 32Q55