Skip to main content
Log in

Balanced and Unbalanced Components of Moist Atmospheric Flows with Phase Changes

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Atmospheric variables (temperature, velocity, etc.) are often decomposed into balanced and unbalanced components that represent low-frequency and high-frequency waves, respectively. Such decompositions can be defined, for instance, in terms of eigen-modes of a linear operator. Traditionally these decompositions ignore phase changes of water since phase changes create a piecewise-linear operator that differs in different phases (cloudy versus non-cloudy). Here we investigate the following question: How can a balanced-unbalanced decomposition be performed in the presence of phase changes? A method is described here motivated by the case of small Froude and Rossby numbers, in which case the asymptotic limit yields precipitating quasi-geostrophic equations with phase changes. Facilitated by its zero-frequency eigenvalue, the balanced component can be found by potential vorticity (PV) inversion, by solving an elliptic partial differential equation (PDE), which includes Heaviside discontinuities due to phase changes. The method is also compared with two simpler methods: one which neglects phase changes, and one which simply treats the raw pressure data as a streamfunction. Tests are shown for both synthetic, idealized data and data from Weather Research and Forecasting (WRF) model simulations. In comparisons, the phase-change method and no-phase-change method produce substantial differences within cloudy regions, of approximately 5 K in potential temperature, due to the presence of clouds and phase changes in the data. A theoretical justification is also derived in the form of a elliptic PDE for the differences in the two streamfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannon, P. R., Onthe anelastic approximation for a compressible atmosphere, J. Atmos. Sci., 53(23), 1996, 3618–3628.

    Article  MathSciNet  Google Scholar 

  2. Derber, J. and Bouttier, F., Areformulation of the background error covariance in the ECMWF global data assimilation system, Tellus A, 51(2), 1999, 195–221.

    Article  Google Scholar 

  3. Dutrifoy, A. and Majda, A. J., Thedynamics of equatorial long waves: a singular limit with fast variable coefficients, Commun. Math. Sci., 4(2), 2006, 375–397.

    Article  MathSciNet  MATH  Google Scholar 

  4. Dutrifoy, A. and Majda, A. J., Fastwave averaging for the equatorial shallow water equations, Comm.PDEs, 32(10), 2007, 1617–1642.

    Article  MATH  Google Scholar 

  5. Dutrifoy, A. and Majda, A. J. and Schochet, S., Asimple justification of the singular limit for equatorial shallow-water dynamics, Coram. Pure Appl. Math., 62(3), 2009, 322–333.

    Article  MATH  Google Scholar 

  6. Emanuel, K. A., AtmosphericConvection, Oxford University Press, New York, 1994.

    Google Scholar 

  7. Embid, P. F. and Majda, A. J., Averagingover fast gravity waves for geophysical flows with arbitary potential vorticity, Comm. PDEs, 21(3-4), 1996, 619–658.

    Article  MATH  Google Scholar 

  8. Embid, P. F. and Majda, A. J., LowFroude number limiting dynamics for stably stratified flow with small or finite Rossby numbers, Geophys. Astrophys. Fluid Dynam., 87(1-2), 1998, 1–50.

    Article  Google Scholar 

  9. Fogelson, A. L. and Keener, J. P., Immersedinterface methods for Neumann and related problems in two and three dimensions, SIAM J. Sci. Comput., 22(5), 2001, 1630–1654.

    Article  MATH  Google Scholar 

  10. Frierson, D. M. W. and Majda, A. J. and Pauluis, O. M., Largescale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit, Commun. Math. Sci., 2(4), 2004, 591–626.

    Article  MathSciNet  MATH  Google Scholar 

  11. Grabowski, W. W. and Smolarkiewicz, P. K., Two-time-level semi-Lagrangian modeling of precipitating clouds, Mon. Wea. Rev., 124(3), 1996, 487–497.

    Article  Google Scholar 

  12. Hernandez-Duenas, G., Majda, A. J., Smith, L. M. and Stechmann, S. N., Minimalmodels for precipitating turbulent convection, J. Fluid Mech., 717, 2013, 576–611.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoskins, B. J., McIntyre, M. E. and Robertson, A. W., Onthe use and significance of isentropic potential vorticity maps, Q. J. Roy. Met. Soc., 111(470), 1985, 877–946.

    Article  Google Scholar 

  14. Kalnay, E., Atmosphericmodeling, data assimilation and predictability, Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  15. Kessler, E., Onthe distribution and continuity of water substance in atmospheric circulations, Number 32 in Meteorological Monographs. American Meteorological Society, Providence, 1969.

    Book  Google Scholar 

  16. Khouider, B., Majda, A. J. and Stechmann, S. N., Climatescience in the tropics: waves, vortices and PDEs, Nonlinearity, 26(1), 2013, R1–R68.

    Article  MATH  Google Scholar 

  17. Klainerman, S. and Majda, A. J., Singularlimits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34(4), 1981, 481–524.

    Article  MATH  Google Scholar 

  18. Klainerman, S. and Majda, A. J., Compressibleand incompressible fluids, Comm. Pure Appl. Math., 35(5), 1982, 629–651.

    Article  MathSciNet  MATH  Google Scholar 

  19. Klein, R. and Majda, A. J., Systematicmultiscale models for deep convection on mesoscales, Theor. Comp. Fluid Dyn., 20(5-6), 2006, 525–551.

    Article  Google Scholar 

  20. Kleist, D. T., Parrish, D. F., Derber, J. C, Treadon, R., Errico, R. M. and Yang, R., Improvingincremental balance in the GSI 3DVAR analysis system, Mon. Wea. Rev., 137(3), 2009, 1046–1060.

    Article  Google Scholar 

  21. Lackmann, G., MidlatitudeSynoptic Meteorology: Dynamics, Analysis, and Forecasting, American Meteorological Society, Providence, 2011.

    Book  Google Scholar 

  22. LeVeque, R. J., FiniteDifference Methods for Ordinary and Partial Differential Equations, Steady State and Time Dependent Problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2007.

    Book  MATH  Google Scholar 

  23. Leveque, R. J. and Li, Z., Theimmersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31(4), 1994, 1019–1044.

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Z., Anote on immersed interface method for three-dimensional elliptic equations, Comput. Math. Appl, 31(3), 1996, 9–17.

    Article  MathSciNet  Google Scholar 

  25. Li, Z. and Ito, K., Maximumprinciple preserving schemes for interface problems with discontinuous coefficients, SIAM J. Sci. Comput., 23(1), 2001, 339–361.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lipps, F. B., Hemler, R. S., Ascale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci., 39(10), 1982, 2192–2210.

    Article  Google Scholar 

  27. Liu, X.-D. and Fedkiw, R. P. and Kang, M., Aboundary condition capturing method for Poisson's equation on irregular domains, J. Comput. Phys., 160(1), 2000, 151–178.

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, X.-D. and Sideris, T., Convergenceof the ghost fluid method for elliptic equations with interfaces, Math. Comput., 72(244), 2003, 1731–1746.

    Article  MATH  Google Scholar 

  29. Majda, A. J., CompressibleFluid Flow and Systems of Conservation Laws in Several Space Variables, volume 53 of Applied Mathematical Sciences, Springer-Verlag, New York, 1984.

    Book  Google Scholar 

  30. Majda, A. J., Introductionto PDEs and Waves for the Atmosphere and Ocean, Volume 9 of Courant Lecture Notes in Mathematics, American Mathematical Society, Providence, 2003.

    Google Scholar 

  31. Majda, A. J. and Embid, P., Averagingover fast gravity waves for geophysical flows with unbalanced initial data, Theor. Comput. Fluid Dyn., 11(3-4), 1998, 155–169.

    Article  MATH  Google Scholar 

  32. Majda, A. J. and Harlim, J., FilteringTurbulent Complex Systems, Cambridge University Press, Cambridge, 2012.

    MATH  Google Scholar 

  33. Majda, A. J. and Klein, R., Systematicmultiscale models for the Tropics, J. Atmos. Sci., 60(2), 2003, 393–408.

    Article  Google Scholar 

  34. Majda, A. J. and Souganidis, P. E., Existenceand uniqueness of weak solutions for precipitation fronts: A novel hyperbolic free boundary problem in several space variables, Coram. Pure Appl. Math., 63(10), 2010, 1351–1361.

    Article  MATH  Google Scholar 

  35. Marshall, J. and Plumb, R. A., Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, Academic Press, Boston, MA, 2007.

    Google Scholar 

  36. Martin, J. E., Mid-latitude Atmospheric Dynamics: A First Course, John Wiley & Sons, Chichester, 2006.

    Google Scholar 

  37. McTaggart-Cowan, R., Gyakum, J. R. and Yau, M. K., Moistcomponent potential vorticity, J. Atmos. Sci., 60(1), 2003, 166–177.

    Article  Google Scholar 

  38. Ogura, Y. and Phillips, N. A., Scaleanalysis of deep and shallow convection in the atmosphere, J. Atmos. Sei, 19(2), 1962, 173–179.

    Article  Google Scholar 

  39. Parrish, D. F. and Derber, J. C., The National Meteorological Center's spectral statistical-interpolation analysis system, Mon. Wea. Rev., 120(8), 1992, 1747–1763.

    Article  Google Scholar 

  40. Rogers, R. R. and Yau, M. K., AShort Course in Cloud Physics, Butterworth Heinemann, Burlington, 1989.

  41. Schubert, W. H., Hausman, S. A., Garcia, M., Ooyama, K. V. and Kuo, H.-O, Potential vorticity in a moist atmosphere, J. Atmos. Sci., 58(21), 2001, 3148–3157.

    Article  Google Scholar 

  42. Skamarock, W. C, Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W. and Powers, J. G., Adescription of the Advanced Research WRF Version 3, NCAR/TN-475+STR, NCAR, 2008.

    Google Scholar 

  43. Smith, L. M. and Stechmann, S. N., Precipitatingquasigeostrophic equations and potential vorticity inversion with phase changes, J. Atmos. Sci., 74(10), 2017, 3285–3303.

    Article  Google Scholar 

  44. Stechmann, S. N. and Majda, A. J., Thestructure of precipitation fronts for finite relaxation time, Theor. Comp. Fluid Dyn., 20(5-6), 2006, 377–404.

    Article  Google Scholar 

  45. Stevens, B., Atmosphericmoist convection, Annu. Rev. Earth Planet. Sci., 33(1), 2005, 605–643.

    Article  Google Scholar 

  46. Trefethen, L. N. and Bau III, D., NumericalLinear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1997.

    Google Scholar 

  47. Tzou, C.-N. and Stechmann, S. N., Simplesecond-order finite differences for elliptic PDEs with discontinuous coefficients and interfaces, Coram. App. Math, and Comp. Sci., 14(2), 2019, 121–147.

    Google Scholar 

  48. Vallis, G. K., Atmosphericand Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation, Cambridge University Press, New York, 2006.

    Book  Google Scholar 

  49. Wetzel, A. N., Smith, L. M. and Stechmann, S. N., Moisturetransport due to baroclinic waves: Linear analysis of precipitating quasi-geostrophic dynamics, Math. Glim. Weather Forecast., 3(1), 2017, 28–50.

    Google Scholar 

  50. Zhou, Y.-S. and Zhu, K.-F. and Zhang, Z., Anomalyof the moist potential vorticity substance with mass forcing and its application in diagnosing Mei-yu front rainfall, Atmos. Ocean. Sci. Lett., 8(1), 2015, 39–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alfredo N. Wetzel, Leslie M. Smith, Samuel N. Stechmann or Jonathan E. Martin.

Additional information

Dedicated to Professor Andrew J. Majda on the occasion of his 70th birthday

This work was supported by the National Science Foundation through grant AGS1443325 and DMS-1907667 and the University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wetzel, A.N., Smith, L.M., Stechmann, S.N. et al. Balanced and Unbalanced Components of Moist Atmospheric Flows with Phase Changes. Chin. Ann. Math. Ser. B 40, 1005–1038 (2019). https://doi.org/10.1007/s11401-019-0170-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-019-0170-4

Keywords

2000 MR Subject Classification

Navigation