Abstract
Given ϕ a subharmonic function on the complex plane ℂ, with ΔϕdA being a doubling measure, the author studies Fock Carleson measures and some characterizations on μ such that the induced positive Toeplitz operator Tμ is bounded or compact between the doubling Fock space \(F_\phi ^p\) and \(F_\phi ^\infty \) with 0 < p ≤ ∞, where μ is a positive Borel measure on ℂ.
Similar content being viewed by others
References
Bauer, W., Coburn, L. and Isralowitz, J., Heat flow, BMO, and the compactness of Toeplitz operators, J. Fund. Anal., 259, 2010, 57–78.
Cho, H. R., Choe, B. R. and Koo, H., Combinations of composition operators on the Fock-Sobolev spaces, Potential Anal., 41(4), 2014, 1223–1246.
Cho, H. R., Choe, B. R. and Koo, H., Fock-Sobolev spaces of fractional order, Potential Anal., 43, 2015, 199–240.
Choe, H. and Zhu, K. H., Fock-Sobolev spaces and their Carleson measures, J. Funct. Anal., 263, 2012, 2483–2506.
Christ, M., On the \(⩈erline ¶rtial \) equation in weighted L 2 norms in ℂ1, J. Geom. Anal., 1(3), 1991, 193–230.
Coburn, L. Isralowitz, J. and Li, B., Toeplitz operators with BMO symbols on the Segal-Bargmann space, Trans. Amer. Math. Soc., 363(6), 2011, 3015–3030.
Constantin, O. and Ortega-Cerdà, J., Some spectral properties of the canonical solution operator to \(⩈erline ¶rtial \) on weighted Fock spaces, J. Math. Anal. Appl., 377(1), 2011, 353–361.
Constantin, O. and Peláez, J., Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces, J. Geom. Anal., 26(2), 2016, 1109–1154.
Hu, Z. J. and Lv, X. F., Toeplitz operators from one Fock space to another, Integr. Equ. Oper. Theory, 70, 2011, 541–559.
Hu, Z. J. and Lv, X. F., Toeplitz operators on Fock spaces F p(ϕ), Integr. Equ. Oper. Theory, 80(1), 2014, 33–59.
Hu, Z. J. and Lv, X. F., Hankel operators on weighted Fock spaces, Sci. China (Math.), 46(2), 2016, 141–156.
Hu, Z. J. and Lv, X. F., Positive Toeplitz operators between different weighted Fock spaces, Taiwanese J. Math., 21(2), 2017, 467–487.
Isralowitz, J. and Zhu, K. H., Toeplitz operators on the Fock space, Integr. Equ. Oper. Theory, 66(4), 2010, 593–611.
Lu, J. and Lv, X. F., Toeplitz operators between Fock spaces, Bull. Austr. Math. Soc., 92, 2015, 316–324.
Marco, N., Massaneda, X. and Ortega-Cerdà, J., Interpolating and sampling sequences for entire functions, Geom. Funct. Anal., 13(4), 2003, 862–914.
Marzo, J. and Ortega-Cerdà, J., Pointwise estimates for the Bergman kernel of the weighted Fock space, J. Geom. Anal., 19, 2009, 890–910.
Mengestie, T., Carleson type measures for Fock-Sobolev spaces, Complex Anal. Oper. Theory, 8(6), 2014, 1225–1256.
Mengestie, T., On Toeplitz operators between Fock spaces, Integr. Equ. Oper. Theory, 78, 2014, 213–224.
Oliver, R. and Pascuas, D., Toeplitz operators on doubling Fock spaces, J. Math. Anal. Appl., 435(2), 2016, 1426–1457.
Schneider, G. and Schneider, K., Generalized Hankel operators on the Fock space, Math. Nachr., 282(12), 2009, 1811–1826.
Schneider, G. and Schneider, K., Generalized Hankel operators on the Fock space II, Math. Nachr., 284(14–15), 2011, 1967–1984.
Schuster, A. and Varolin, D., Toeplitz operators and Carleson measures on generalized Bargman-Fock spaces, Integr. Equ. Oper. Theory, 72(3), 2012, 363–392.
Wang, X. F., Cao, G. F. and Xia, J., Toeplitz operators on Fock-Sobolev spaces with positive measure symbols, Sci. China (Math.), 44(3), 2014, 263–274.
Zhu, K. H., Analysis on Fock Spaces, Graduate Texts in Mathematics, 263, Springer-Verlag, New York, 2012.
Acknowledgement
The author would like to thank the referees for making some very good suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the National Natural Science Foundation of China (Nos. 11601149, 11771139, 11571105) and the Zhejiang Provincial Natural Science Foundation of China (No. LY15A0 10014).
Rights and permissions
About this article
Cite this article
Lv, X. Carleson Measures and Toeplitz Operators on Doubling Fock Spaces. Chin. Ann. Math. Ser. B 40, 349–362 (2019). https://doi.org/10.1007/s11401-019-0138-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11401-019-0138-4