Skip to main content
Log in

Poincaré’s Lemma on Some Non-Euclidean Structures

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The author proves the Poincaré lemma on some (n + 1)-dimensional corank 1 sub-Riemannian structures, formulating the \(\frac{{\left( {n - 1} \right)n\left( {{n^2} + 3n - 2} \right)}}{8}\) necessarily and sufficiently “curl-vanishing” compatibility conditions. In particular, this result solves partially an open problem formulated by Calin and Chang. The proof in this paper is based on a Poincaré lemma stated on Riemannian manifolds and a suitable Cesàro-Volterra path integral formula established in local coordinates. As a byproduct, a Saint-Venant lemma is also provided on generic Riemannian manifolds. Some examples are presented on the hyperbolic space and Carnot/Heisenberg groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J. E. and Ratiu, T., Manifolds, Tensor Analysis, and Applications, 2nd edition, Applied Mathematical Sciences, 75, Springer-Verlag, New York, 1988.

    Book  MATH  Google Scholar 

  2. Agrachev, A., Barilari, D. and Boscain, U., Introduction to Geodesics in Sub-Riemannian Geometry, Geometry Analysis and Dynamics on Sub-Kiemannian Manifolds, II, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2016.

    MATH  Google Scholar 

  3. Amrouche, Ch., Ciarlet, P. G. and Mardare, C., Remarks on a lemma by Jacques-Louis Lions, C. R. Math. Acad. Sci. Paris, 352(9), 2014, 691–695.

    Article  MathSciNet  MATH  Google Scholar 

  4. Amrouche, Ch., Ciarlet, P. G. and Mardare, C., On a lemma of Jacques-Louis Lions and its relation to other fundamental results, J. Math. Pures Appl. (9), 104(2), 2015, 207–226.

    Article  MathSciNet  MATH  Google Scholar 

  5. Calin, O. and Chang, D.-C., Sub-Riemannian Geometry, General Theory and Examples, Encyclopedia Math. Appl., 126, Cambridge University Press, Cambridge, 2009.

    Book  Google Scholar 

  6. Calin, O., Chang, D.-C. and Eastwood, M., Integrability conditions for the Grushin and Martinet distributions, Bull. Inst. Math. Acad. Sin. (N.S.), 8(2), 2013, 159–168.

    MathSciNet  MATH  Google Scholar 

  7. Calin, O., Chang, D.-C. and Eastwood, M., Integrability conditions for Heisenberg and Grushin-type distributions, Anal. Math. Phys., 4(1–2), 2014, 99–114.

    Article  MathSciNet  MATH  Google Scholar 

  8. Calin, O., Chang, D.-C. and Hu, J., Poincaré’s lemma on the Heisenberg group, Adv. in Appl. Math., 60, 2014, 90–102.

    Article  MathSciNet  MATH  Google Scholar 

  9. Calin, O., Chang, D.-C. and Hu, J., Integrability conditions on Engel-type manifolds, Anal. Math. Phys., 5(3), 2015, 217–231.

    Article  MathSciNet  MATH  Google Scholar 

  10. Calin, O., Chang, D.-C. and Hu, J., Integrability conditions on a sub-Riemannian structure on S3, Anal. Math. Phys., 7(1), 2017, 9–18.

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, W. and Jost, J., A Riemannian version of Korn’s inequality, Calc. Var. Partial Differential Equations, 14, 2012, 517–530.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P. G., Linear and nonlinear functional analysis with applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013.

    MATH  Google Scholar 

  13. Ciarlet, P. G., Gratie, L., Mardare, C. and Shen, M., Saint Venant compatibility equations on a surface application to intrinsic shell theory, Math. Models Methods Appl. Sci., 18(2), 2008, 165–194.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ciarlet, P. G. and Mardare, S., Nonlinear Saint-Venant compatibility conditions and the intrinsic approach for nonlinearly elastic plates, Math. Models Methods Appl. Sci., 23(12), 2013, 2293–2321.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P. G., Mardare, S. and Shen, M., Saint Venant compatibility equations in curvilinear coordinates, Anal. Appl. (Singap.), 5(3), 2007, 231–251.

    Article  MathSciNet  MATH  Google Scholar 

  16. do Carmo, M. P., Riemannian Geometry, Birkhäuser, Boston, 1992.

    Book  MATH  Google Scholar 

  17. Figalli, A. and Rifford, L., Mass transportation on sub-Riemannian manifolds, Geom. Funct. Anal., 20(1), 2010, 124–159.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ohta, S. and Sturm, K.-T., Heat flow on Finsler manifolds, Comm. Pure Appl. Math., 62(10), 2009, 1386–1433.

    Article  MathSciNet  MATH  Google Scholar 

  19. Rizzi, L., Measure contraction properties of Carnot groups, Calc. Var. Partial Differential Equations, 55(3), 2016, 20 pages.

    Google Scholar 

Download references

Acknowledgements

The author thanks Professor Philippe G. Ciarlet for his invitation to the City University of Hong Kong where the present work has been initiated. He is also grateful to Professors Ovidiu Calin and Der-Chen Chang for their suggestions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Kristály.

Additional information

Dedicated to Philippe G. Ciarlet on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristály, A. Poincaré’s Lemma on Some Non-Euclidean Structures. Chin. Ann. Math. Ser. B 39, 297–314 (2018). https://doi.org/10.1007/s11401-018-1065-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-018-1065-5

Keywords

2000 MR Subject Classification

Navigation