Skip to main content
Log in

Approximate solution of the Kuramoto-Shivashinsky equation on an unbounded domain

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The main goal of this paper is to approximate the Kuramoto-Shivashinsky (K-S for short) equation on an unbounded domain near a change of bifurcation, where a band of dominant pattern is changing stability. This leads to a slow modulation of the dominant pattern. Here we consider PDEs with quadratic nonlinearities and derive rigorously the modulation equation, which is called the Ginzburg-Landau (G-L for short) equation, for the amplitudes of the dominating modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R. A., Sobolev spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. Adams, D. R. and Hedberg, L. I., Function Spaces and Potential Theory, Springer-Verlag, 1996.

    Google Scholar 

  3. Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston and London, 1994.

    Book  MATH  Google Scholar 

  4. Alizadeh-Pahlavan, A., Aliakbar, V., Vakili-Farahani, F. and Sadeghy, K., MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14, 2009, 47388.

    Google Scholar 

  5. Awrejcewicz, J., Andrianov, I. V. and Manevitch, L. I., Asymptotic Approaches in Nonlinear Dynamics, Springer-Verlag, Berlin, 1998.

    Book  MATH  Google Scholar 

  6. Baldwin, D., Goktas, O., Hereman, W., et al., Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs, J. Symbolic Comput., 37, 2004, 669–705.

    Article  MathSciNet  MATH  Google Scholar 

  7. Benney, D. J., Long waves on liquid films, J. Math. Phys., 45, 1966, 150–155.

    Article  MathSciNet  MATH  Google Scholar 

  8. Collet, P. and Eckmann, J. P., The time dependent amplitude equation for the Swift-Hohenberg problem, Comm. Math. Physics., 132, 1990, 139–153.

    Article  MathSciNet  MATH  Google Scholar 

  9. He, J. H., Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng., 178, 1999, 25762.

    Article  MathSciNet  Google Scholar 

  10. Hooper, A. P. and Grimshaw, R., Nonlinear instability at the interface between two fluids, Phys. Fluids, 28, 1985, 37–45.

    Article  MATH  Google Scholar 

  11. Kuramoto, Y., Diffusion-induced chaos in reaction systems, Suppl. Prog. Theor. Phys, 64, 1978, 346–367.

    Article  Google Scholar 

  12. Kuramoto, Y. and Tsuzuki, T., On the formation of dissipative structures in reaction diffusion systems, Prog. Theor. Phys., 54, 1975, 687–699.

    Article  Google Scholar 

  13. Kuramoto, Y. and Tsuzuki, T., Persistent propogation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55, 1976, 356–369.

    Article  Google Scholar 

  14. Liao, S. J., A kind of approximate solution technique which does not depend upon small parameters (II): An application in fluid mechanics, Int. J. Nonlinear Mech., 32(8), 1997, 1522.

    MathSciNet  Google Scholar 

  15. Ma, W. X. and Fuchssteiner, B., Integrable theory of the perturbation equations, Chaos, Solitons & Fractals, 7(8), 1996, 1227–1250.

    Article  MathSciNet  MATH  Google Scholar 

  16. Mielke, A. and Schneider, G., Attractors for modulation equations on unbounded domains-existence and comparison, Nonlinearity, 8, 1995, 743–768.

    Article  MathSciNet  MATH  Google Scholar 

  17. Mielke, A., Schneider, G. and Ziegra, A., Comparison of inertial manifolds and application to modulated systems, Math. Nachr., 214, 2000, 53–69.

    Article  MathSciNet  MATH  Google Scholar 

  18. Runst, T. and Sickel, W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, New York, 1996.

    Book  MATH  Google Scholar 

  19. Sajid, M., Hayat, T., Comparison of HAM and HPM methods for nonlinear heat conduction and convection equations, Nonlinear Anal: Real World Appl., 9, 2008, 2296301.

    MathSciNet  MATH  Google Scholar 

  20. Schneider, G., A new estamite for the Ginzburg-Landau approximation on the real axis, J. Nonlinear Science, 4, 1994, 23–34.

    Article  MathSciNet  MATH  Google Scholar 

  21. Schneider, G., The validity of generalized Ginzburg-Landau equations, Math. Methods Appl. Sci., 19(9), 1996, 717–736.

    Article  MathSciNet  MATH  Google Scholar 

  22. Sivashinsky, G. I., Nonlinear analysis of hydrodynamic instability in laminar flames I: Derivation of basic equations, Acta Astronau, 4, 1977, 1177–1206.

    Article  MathSciNet  MATH  Google Scholar 

  23. Sivashinsky, G. I., Instabilities, pattern formation, and turbulence in flames, Annu. Rev. Fluid Mech., 15, 1983, 179–199.

    Article  MATH  Google Scholar 

  24. Shlang, T. and Sivashinsky, G. I., Irregular flow of a liquid film down a vertical column, J. Phys., 43, 1982, 459–466.

    Article  Google Scholar 

  25. Van Gorder, R. A. and Vajravelu, R. A., Analytic and numerical solutions to the Lane-Emden equation, Phys. Lett. A, 372, 2008, 60605.

    MathSciNet  MATH  Google Scholar 

  26. Von Dyke, M., Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, California, 1975.

    Google Scholar 

  27. Yabushita, K., Yamashita, M. and Tsuboi, K., An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J. Phys. A, 40, 2007, 840316.

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhu, S. P., A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield, ANZIAM J., 47, 2006, 47794.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to the referees for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael W. Mohammed.

Additional information

This work was supported by the Deanship of Scientific Research, University of Hail, KSA (No. 0150258).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, W.W. Approximate solution of the Kuramoto-Shivashinsky equation on an unbounded domain. Chin. Ann. Math. Ser. B 39, 145–162 (2018). https://doi.org/10.1007/s11401-018-1057-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-018-1057-5

Keywords

Navigation