Skip to main content
Log in

A DLM/FD/IB Method for Simulating Compound Cell Interacting with Red Blood Cells in a Microchannel

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this article, a computational model and related methodologies have been tested for simulating the motion of a malaria infected red blood cell (iRBC for short) in Poiseuille flow at low Reynolds numbers. Besides the deformability of the red blood cell membrane, the migration of a neutrally buoyant particle (used to model the malaria parasite inside the membrane) is another factor to determine the iRBC motion. Typically an iRBC oscillates in a Poiseuille flow due to the competition between these two factors. The interaction of an iRBC and several RBCs in a narrow channel shows that, at lower flow speed, the iRBC can be easily pushed toward the wall and stay there to block the channel. But, at higher flow speed, RBCs and iRBC stay in the central region of the channel since their migrations are dominated by the motion of the RBC membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmid-Schonbein, G. W., Shih, Y. Y. and Chien, S., Morphometry of human leukocytes, Blood, 56, 1980, 866–875.

    Google Scholar 

  2. Diez-Silva, M., Dao, M., Han, J., et al., Shape and biomechanical characteristics of human red blood cells in health and disease, MRS Bull., 35, 2010, 382–388.

    Article  Google Scholar 

  3. Glenister, F. K., Coppel, R. L., Cowman, A. F., et al., Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells, Blood, 99, 2002, 1060–1063.

    Article  Google Scholar 

  4. Veerapaneni, S. K., Young, Y.-N., Vlahovska, P. M. and Blawzdziewicz, J., Dynamics of a compound vesicle in shear flow, Phys. Rev. Lett., 106, 2011, 158103.

    Article  Google Scholar 

  5. Kaoui, B., Krüger, T. and Harting, J., Complex dynamics of a bilamellar vesicle as a simple model for leukocytes, Soft Matter, 9, 2013, 8057–8061.

    Article  Google Scholar 

  6. Nash, G. B., O’Brien, E., Gordon-Smith, E. C. and Dormandy, J. A., Abnormalities in the mechanical properties of red blood cells caused by Plasmodium falciparum, Blood, 74, 1989, 855–861.

    Google Scholar 

  7. Imai, Y., Kondo, H., Ishikawa, T., et al., Modeling of hemodynamics arising from malaria infection, J. Biomech., 43, 2010, 1386–1393.

    Article  Google Scholar 

  8. Wu, T. and Feng, J. J., Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage, Biomicrofluidics, 7, 2013, 044115.

    Article  Google Scholar 

  9. Shi, L., Pan, T.-W. and Glowinski, R., Deformation of a single blood cell in bounded Poiseuille flows, Phys. Rev. E, 85, 2012, 016307.

    Article  Google Scholar 

  10. Shi, L., Pan, T.-W. and Glowinski, R., Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows, Phys. Rev. E, 86, 2012, 056308.

    Article  Google Scholar 

  11. Shi, L., Pan, T.-W. and Glowinski, R., Numerical simulation of lateral migration of red blood cells in Poiseuille flows, Int. J. Numer. Methods Fluids, 68, 2012, 1393–1408.

    Article  MathSciNet  MATH  Google Scholar 

  12. Pan, T.-W. and Glowinski, R., Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow, J. Comput. Phys., 181, 2002, 260–279.

    Article  MathSciNet  MATH  Google Scholar 

  13. Pan, T.-W. and Glowinski, R., Direct simulation of the motion of neutrally buoyant balls in a threedimensional Poiseuille flow, C. R. Mecanique, Acad. Sci. Paris, 333, 2005, 884–895.

    Article  MATH  Google Scholar 

  14. Pan, T.-W., Chang, C.-C. and Glowinski, R., On the motion of a neutrally buoyant ellipsoid in a threedimensional Poiseuille flow, Comput. Methods Appl. Mech. Engrg., 197, 2008, 2198–2209.

    Article  MathSciNet  MATH  Google Scholar 

  15. Pan, T.-W., Huang, S.-L., Chen, S.-D., et al., A numerical study of the motion of a neutrally buoyant cylinder in two dimensional shear flow, Computers & Fluids, 87, 2013, 57–66.

    Article  MathSciNet  MATH  Google Scholar 

  16. Pan, T.-W., Shi, L. and Glowinski, R., A DLM/FD/IB method for simulating cell/cell and cell/particle interaction in microchannels, Chinese Annals of Mathematics, Series B, 31, 2010, 975–990.

    Article  MathSciNet  MATH  Google Scholar 

  17. Pan, T.-W., Zhao, S., Niu, X. and Glowinski, R., A DLM/FD/IB method for simulating compound vesicle motion under creeping flow condition, J. Comput. Phys., 300, 2015, 241–253.

    Article  MathSciNet  MATH  Google Scholar 

  18. Glowinski, R., Pan, T.W., Hesla, T., et al., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys., 169, 2001, 363–427.

    Article  MathSciNet  MATH  Google Scholar 

  19. Desjardins, B. and Esteban, M. J., Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal., 146, 1999, 59–71

    Article  MathSciNet  MATH  Google Scholar 

  20. Tsubota, K., Wada, S. and Yamaguchi, T., Simulation study on effects of hematocrit on blood flow properties using particle method, J. Biomech. Sci. Eng., 1, 2006, 159–170.

    Article  Google Scholar 

  21. Wang, T., Pan, T. W., Xing, Z. and Glowinski, R., Numerical simulation of rheology of red blood cell rouleaux in microchannels, Phys. Rev. E, 79, 2009, 041916.

    Article  Google Scholar 

  22. Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 1977, 220–252.

    Article  MathSciNet  MATH  Google Scholar 

  23. Peskin, C. S. and McQueen, D. M., Modeling prosthetic heart valves for numerical analysis of blood flow in the heart, J. Comput. Phys., 37, 1980, 11332.

    Article  MathSciNet  MATH  Google Scholar 

  24. Peskin, C. S., The immersed boundary method, Acta Numer., 11, 2002, 479–517.

    Article  MathSciNet  MATH  Google Scholar 

  25. Bristeau, M. O., Glowinski, R. and Périaux, J., Numerical methods for the Navier-Stokes equations, applications to the simulation of compressible and incompressible viscous flow, Computer Physics Reports, 6, 1987, 73–187.

    Google Scholar 

  26. Glowinski, R., Finite element methods for incompressible viscous flow, Handbook of Numerical Analysis, Vol. IX, Ciarlet, P. G. and Lions, J. L. (eds.), North-Holland, Amsterdam, 2003, 3–1176.

    Google Scholar 

  27. Girault, V. and Glowinski, R., Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan J. Indust. Appl. Math., 12, 1995, 487–514.

    Article  MathSciNet  MATH  Google Scholar 

  28. Chorin, A. J., Hughes, T. J. R., McCracken, M. F. and Marsden, J. E., Product formulas and numerical algorithms, Comm. Pure Appl. Math., 31, 1978, 205–256.

    Article  MathSciNet  MATH  Google Scholar 

  29. Dean, E. J. and Glowinski, R., A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow, C. R. Acad. Sc. Paris, Série 1, 325, 1997, 783–791.

    Article  MathSciNet  MATH  Google Scholar 

  30. Dean, E. J., Glowinski, R. and Pan, T. W., A wave equation approach to the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations, Mathematical and Numerical Aspects of Wave Propagation, De Santo, J. A. (ed.), SIAM, Philadelphia, 1998, 65–74.

    Google Scholar 

  31. Alexeev, A., Verberg, R. and Balazs, A. C., Modeling the interactions between deformable capsules rolling on a compliant surface, Soft Matter, 2, 2006, 499–509.

    Article  Google Scholar 

  32. Fischer, T. M., Stöhr-Liesen, M. and Schmid-Schönbein, H., The red cell as a fluid droplet: Tank tread-like motion of the human erythrocyte membrane in shear flow, Science, 202, 1978, 894–896.

    Article  Google Scholar 

  33. Keller, S. R. and Skalak, R., Motion of a tank-treading ellipsoidal particle in a shear flow, J. Fluid Mech., 120, 1982, 27–47.

    Article  MATH  Google Scholar 

  34. Beaucourt, J., Rioual, F., Séon, T., et al., Steady to unsteady dynamics of a vesicle in a flow, Phys. Rev. E, 9, 2004, 011906.

    Article  Google Scholar 

  35. Li, H. B., Yi, H. H., Shan, X. W. and Fang, H. P., Shape changes and motion of a vesicle in a fluid using a lattice Boltzmann model, Europhysics Letters, 81, 2008, 54002.

    Article  Google Scholar 

  36. Lai, M.-C., Hu, W. F. and Lin, W. W., A fractional step immersed boundary method for stokes flow with an inextensible interface enclosing a solid particle, SIAM. J. Sci. Comput., 34, 2012, 692–710.

    Article  MathSciNet  MATH  Google Scholar 

  37. Segré, G. and Silberberg, A., Radial particle displacements in Poiseuille flow of suspensions, Nature, 189, 1961, 209–210.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihai Zhao.

Additional information

This work was supported by the National Science Foundation of the United States (Nos.DMS-0914788, DMS-1418308).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Yu, Y., Pan, TW. et al. A DLM/FD/IB Method for Simulating Compound Cell Interacting with Red Blood Cells in a Microchannel. Chin. Ann. Math. Ser. B 39, 535–552 (2018). https://doi.org/10.1007/s11401-018-0081-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-018-0081-9

Keywords

2000 MR Subject Classification

Navigation