Chinese Annals of Mathematics, Series B

, Volume 36, Issue 5, pp 803–812 | Cite as

Two-level additive Schwarz methods using rough polyharmonic splines-based coarse spaces



This paper introduces a domain decomposition preconditioner for elliptic equations with rough coefficients. The coarse space of the domain decomposition method is constructed via the so-called rough polyharmonic splines (RPS for short). As an approximation space of the elliptic problem, RPS is known to recover the quasi-optimal convergence rate and attain the quasi-optimal localization property. The authors lay out the formulation of the RPS based domain decomposition preconditioner, and numerically verify the performance boost of this method through several examples.


Numerical homogenization Domain decomposition Two-level Schwarz additive preconditioner Rough polyharmonic splines 

2000 MR Subject Classification

35B27 41A15 65N55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aarnes, J. and Hou, T. Y., Multiscale domain decomposition methods for elliptic problems with high aspect ratios, Acta Mathematicae Applicatae Sinica, 18(1), 2002, 63–76.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Atteia, M., Fonctions “spline” et noyaux reproduisants d’Aronszajn-Bergman, Rev. Française Informat, Recherche Opérationnelle, 4(R-3), 1970, 31–43.MathSciNetMATHGoogle Scholar
  3. [3]
    Babuška, I. and Lipton, R., Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul., 9, 2011, 373–406.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Babuška, I. and Osborn, J. E., Can a finite element method perform arbitrarily badly? Math. Comp., 69(230), 2000, 443–462.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Bensoussan, A., Lions, J. L. and Papanicolaou, G., Asymptotic Analysis for Periodic Structure, North Holland, Amsterdam, 1978.Google Scholar
  6. [6]
    Berlyand, L. and Owhadi, H., Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast, Archives for Rational Mechanics and Analysis, 198(2), 2010, 677–721.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Duchon, J., Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces, Rev. Francaise Automat. Informat. Recherche Operationnelle Ser. RAIRO Analyse Numerique, 10(R-3), 1976, 5–12.MathSciNetGoogle Scholar
  8. [8]
    Efendiev, Y. and Hou, T., Multiscale finite element methods for porous media flows and their applications, Appl. Numer. Math., 57(5–7), 2007, 577–596.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Efendiev, Y. and Galvis, J., A domain decomposition preconditioner for multiscale high-contrast problems, Domain Decomposition Methods in Science and Engineering XIX, Springer-Verlag, New York, 2011, 189–196.CrossRefGoogle Scholar
  10. [10]
    Efendiev, Y., Galvis, J., Lazarov, R. and Willems, J., Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, ESAIM: Mathematical Modelling and Numerical Analysis, 46(5), 2012, 1175–1199.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Galvis, J. and Efendiev, Y., Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model. Simul., 8(4), 2010, 1461–1483.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Galvis, J. and Efendiev, Y., Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces, Multiscale Modeling Simulation, 8(5), 2010, 1621–1644.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    De Giorgi E., Sulla convergenza di alcune successioni di integrali del tipo dell’aera, Rendi Conti di Mat., 8, 1975, 277–294.MathSciNetMATHGoogle Scholar
  14. [14]
    Graham, I. G., Lechner, P. O. and Scheichl, R., Domain decomposition for multiscale PDEs, Numerische Mathematik, 106(4), 2007, 589–626.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Graham, I. G. and Scheichl, R., Robust domain decomposition algorithms for multiscale PDEs, Numerical Methods for Partial Differential Equations, 23(4), 2007, 859–878.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Hou, T. Y., Wu, X. H. and Cai, Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68(227), 1999, 913–943.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Hou, T. Y. and Wu, X. H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134(1), 1997, 169–189.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Malqvist, A. and Peterseim, D., Localization of elliptic multiscale problems, Math. Comp., 83, 2014, 2583–2603.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Mathew, T. P. A., Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, Lect. Notes Comput. Sci. Eng., Springer-Verlag, Berlin, 2008.Google Scholar
  20. [20]
    Murat, F. and Tartar, L., H-convergence, Séminaire d’Analyse Fonctionnelle et Numérique de l’Université, 1978, 34 pages, English translation: Topics in the Mathematical Modelling of Composite Materials, L. Cherkarv and R. V. Kohn (eds.), Progress in Nonlinear Differential Equations and Their Applications, Vol. 31, Birkhauser, Boston, 1998, 21–43.Google Scholar
  21. [21]
    Owhadi, H. and Zhang, L., Metric-based upscaling, Comm. Pure Appl. Math., 60(5), 2007, 675–723.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Owhadi, H. and Zhang, L., Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast, SIAM Multiscale Modeling Simulation, 9, 2011, 1373–1398.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Owhadi, H., Zhang, L. and Berlyand, L., Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization, ESAIM: Mathematical Modelling and Numerical Analysis, 48(2), 2014, 517–552.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    Papanicolaou, G. C. and Varadhan, S. R. S., Boundary value problems with rapidly oscillating random coefficients, Random Fields, Vol. I–II, 1979; Colloq. Math. Soc. János Bolyai, 27, North-Holland, Amsterdam, 1981, 83, 5–873.Google Scholar
  25. [25]
    Rabut, C., Elementary m-harmonic cardinal B-splines, Numer. Algorithms, 2(1), 1992, 39–61.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Smith, B. F., Petter Bjørstad and William Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, 1996.Google Scholar
  27. [27]
    Spagnolo, S., Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa, 22(3), 1968, 571–597; errata, ibid., 22(3), 1968, 673.MATHGoogle Scholar
  28. [28]
    Toselli, A. and Widlund, O., Domain Decomopsition Methods-Algorithms and Theory, Springer-Verlag, Berlin, 2005.Google Scholar

Copyright information

© Fudan University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Mathematical Center for Interdisciplinary Research, School of Mathematical SciencesSoochow UniversitySuzhou, JiangsuChina
  2. 2.Institute of Natural Sciences and Department of Mathematics, Ministry of Education Key Laboratory of Scientific and Engineering ComputingShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations