Skip to main content
Log in

Global exact boundary controllability for general first-order quasilinear hyperbolic systems

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

For general first-order quasilinear hyperbolic systems, based on the analysis of simple wave solutions along characteristic trajectories, the global two-sided exact boundary controllability is achieved in a relatively short controlling time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cirinà, Marco, Boundary controllability of nonlinear hyperbolic systems, SIAM Journal on Control, 7(2), 1969, 198–212.

    Article  MATH  Google Scholar 

  2. Gugat, Martin and Leugering, Günter, Global boundary controllability of the de St. Venant equations between steady states, Annales de l’Institut Henri Poincaré, Analyse Non Linéare, 20(1), 2003, 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  3. Gugat, Martin and Leugering, Günter, Global boundary controllability of the Saint-Venant system for sloped canals with friction, Annales de l’Institut Henri Poincaré, Analyse Non Linéare, 26(1), 2009, 257–270.

    Article  MATH  MathSciNet  Google Scholar 

  4. Lasiecka, Irena and Triggiani, Roberto, Exact controllability of semilinear abstract systems with application to waves and plates boundary control problems, Applied Mathematics and Optimization, 23(2), 1991, 109–154.

    Article  MATH  MathSciNet  Google Scholar 

  5. Lions, Jacques-Louis, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30(1), 1988, 1–68.

    Article  MATH  MathSciNet  Google Scholar 

  6. Li, Ta-Tsien, Global Classical Solutions for Quasilinear Hyperbolic Systems, Vol. 32, Research in Applied Mathematics, Masson, John Wiley, Paris, 1994.

    Google Scholar 

  7. Li, Ta-Tsien, Controllability and Observability for Quasilinear Hyperbolic Systems, Vol. 3, AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences, Springfield, MO, and Higher Education Press, Beijing, 2010.

    Google Scholar 

  8. Li, Ta-Tsien, Global exact boundary controllability for first order quasilinear hyperbolic systems, Discrete and Continuous Dynamical Systems, Ser. B, 14(4), 2010, 1419–1432.

    Article  MATH  Google Scholar 

  9. Li, Ta-Tsien and Rao, Bo-Peng, Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chinese Annals of Mathematics, Ser. B, 23(2), 2002, 209–218.

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, Ta-Tsien and Rao, Bo-Peng, Exact boundary controllability for quasilinear hyperbolic systems, SIAM Journal on Control and Optimization, 41(6), 2003, 1748–1755.

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, Ta-Tsien and Wang, Zhi-Qiang, Global exact boundary controllability for first order quasilinear hyperbolic systems of diagonal form, International Journal of Dynamical Systems and Differential Equations, 1(1), 2007, 12–19.

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, Ta-Tsien and Yu, Li-Xin, Exact controllability for first order quasilinear hyperbolic systems with zero eigenvalues, Chinese Annals of Mathematics, Ser. B, 24(4), 2003, 415–422.

    Article  MATH  Google Scholar 

  13. Li, Ta-Tsien and Yu, Wen-Ci, Boundary Value Problems for Quasilinear Hyperbolic Systems, Vol. 5, Duke University Mathematics Series, Duke University, Durham, N. C., 1985.

    MATH  Google Scholar 

  14. Russell, David L., Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review, 20(4), 1978, 639–739.

    Article  MATH  MathSciNet  Google Scholar 

  15. Wang, Ke, Global exact boundary controllability for 1-D quasilinear wave equations, Mathematical Methods in the Applied Sciences, 34(3), 2011, 315–324.

    Article  MATH  MathSciNet  Google Scholar 

  16. Wang, Zhi-Qiang, Exact controllability for nonautonomous quasilinear hyperbolic systems, PhD thesis, Fudan University, 2006 (in Chinese).

    Google Scholar 

  17. Wang, Zhi-Qiang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chinese Annals of Mathematics, Ser. B, 27(6), 2006, 643–656.

    Article  MATH  Google Scholar 

  18. Wang, Zhi-Qiang, Global exact controllability for quasilinear hyperbolic systems of diagonal form with linearly degenerate characteristics, Nonlinear Analysis: Theory, Methods & Applications, 69(2), 2008, 510–522.

    Article  MATH  MathSciNet  Google Scholar 

  19. Zuazua, Enrike, Exact controllability for the semilinear wave equation, Journal de Mathématiques Pures et Appliquées, 69(1), 1990, 1–31.

    MATH  MathSciNet  Google Scholar 

  20. Zuazua, Enrique, Exact controllability for semilinear wave equations in one space dimension, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire, 10(1), 1993, 109–129.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunming Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11326159, 11401421), Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, the Initiative Funding for New Researchers, Fudan University and Yang Fan Foundation of Shanghai on Science and Technology (No. 15YF1401100).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Qu, P. Global exact boundary controllability for general first-order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 36, 895–906 (2015). https://doi.org/10.1007/s11401-015-0968-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-015-0968-7

Keywords

2000 MR Subject Classification

Navigation