Chinese Annals of Mathematics, Series B

, Volume 36, Issue 6, pp 991–1000 | Cite as

The gradient estimate of a Neumann eigenfunction on a compact manifold with boundary

  • Jingchen HuEmail author
  • Yiqian Shi
  • Bin Xu


Let eλ(x) be a Neumann eigenfunction with respect to the positive Laplacian Δ on a compact Riemannian manifold M with boundary such that Δe λ = λ2 e λ in the interior of M and the normal derivative of e λ vanishes on the boundary of M. Let χλ be the unit band spectral projection operator associated with the Neumann Laplacian and f be a square integrable function on M. The authors show the following gradient estimate for χλ f as \(\lambda \geqslant 1:{\left\| {\nabla {\chi _\lambda }{\kern 1pt} \left. f \right\|} \right._\infty } \leqslant C\left( {\lambda \left\| {{\chi _\lambda }{{\left. f \right\|}_\infty } + \left. {{\lambda ^{ - 1}}} \right\|} \right.\Delta {\chi _\lambda }{{\left. f \right\|}_\infty }} \right)\), where C is a positive constant depending only on M. As a corollary, the authors obtain the gradient estimate of eλ: For every λ ≥ 1, it holds that \(\left\| {\nabla {{\left. {{e_\lambda }} \right\|}_\infty } \leqslant C\left. \lambda \right\|} \right.{\left. {{e_\lambda }} \right\|_\infty }\).


Neumann eigenfunction Gradient estimate 

2000 MR Subject Classification

35P20 35J05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brandt, A., Interior estimates for second order elliptic differential (or finite difference) equations via the maximum principle, Israel J. Math., 7, 1969, 95–121.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Brüning, J., Über knoten von eigenfunktionen des Laplace-Beltrami operators, Math. Z., 158, 1975, 15–21.CrossRefGoogle Scholar
  3. [3]
    Donnelly, H. and Fefferman, C., Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math., 93(1), 1988, 161–183.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Donnelly, H. and Fefferman, C., Growth and geometry of eigenfunctions of the Laplacian, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., New York, 122, 1990, 635–655.MathSciNetGoogle Scholar
  5. [5]
    Duong, X. T., Ouhabaz, E. M. and Sikora, A., Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal., 196, 2002, 443–485.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Gilbarg, D. and Trudinger, Neil S., Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 Edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.zbMATHGoogle Scholar
  7. [7]
    Grieser, D., Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary, Comm. Partial Differential Equations, 27(7–8), 2002, 1283–1299.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Hörmander, L., The Analysis of Linear Partial Differential Equations III, Corrected Second Printing, Springer-Verlag, Tokyo, 1994.Google Scholar
  9. [9]
    Seeger, A. and Sogge, C. D., On the boundedness of functions of pseudo-differential operators on a compact manifolds, Duke Math. J., 59, 1989, 709–736.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Shi, Y. Q. and Xu, B., Gradient estimate of an eigenfunction on a compact Riemannian manifold without boundary, Ann. Glob. Anal. Geom., 2010, 38(1), 21–26.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [[11]
    Shi, Y. Q. and Xu, B., Gradient estimate of a Dirichlet eigenfunction on a compact manifold with boundary, Forum Math., DOI: 10.1515/FORM.2011.115Google Scholar
  12. [12]
    Smith, H. F., Sharp L 2L q bounds on the spectral projectors for low regularity metrics, Math. Res. Lett., 13(5–6), 2006, 967–974.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Xu, X., Gradient estimates for eigenfunctions of compact manifolds with boundary and the Hörmander multiplier theorem, Forum Mathematicum, 21(3), 2009, 455–476.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Xu, X., Eigenfunction estimates for Neumann Laplacian and applications to multiplier problems, Proc. Amer. Math. Soc., 139, 2011, 3583–3599.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Zelditch, S., Local and global analysis of eigenfunctions on Riemannian manifolds, Handbook of geometric analysis, No. 1, 545–658, Adv. Lect. Math., 7, Int. Press, Somerville, MA, 2008.Google Scholar

Copyright information

© Fudan University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of MathematicsUSTC, Chinese Academy of SciencesHefeiChina
  2. 2.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations