Skip to main content
Log in

On the Lie algebras, generalized symmetries and darboux transformations of the fifth-order evolution equations in shallow water

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

By considering the one-dimensional model for describing long, small amplitude waves in shallow water, a generalized fifth-order evolution equation named the Olver water wave (OWW) equation is investigated by virtue of some new pseudo-potential systems. By introducing the corresponding pseudo-potential systems, the authors systematically construct some generalized symmetries that consider some new smooth functions {X } i=1,2,··· ,n β=1,2,··· ,N depending on a finite number of partial derivatives of the nonlocal variables v β and a restriction i.e., \(\sum\limits_{i,\alpha ,\beta } {\left( {\tfrac{{\partial \xi ^i }} {{\partial v^\beta }}} \right) + \left( {\tfrac{{\partial \eta ^\alpha }} {{\partial v^\beta }}} \right)} \ne 0\) ≠ 0, i.e., \(\sum\limits_{i,\alpha ,\beta } {\left( {\tfrac{{\partial G^\alpha }} {{\partial v^\beta }}} \right)} \ne 0\). Furthermore, the authors investigate some structures associated with the Olver water wave (AOWW) equations including Lie algebra and Darboux transformation. The results are also extended to AOWW equations such as Lax, Sawada-Kotera, Kaup-Kupershmidt, Itˆo and Caudrey-Dodd-Gibbon-Sawada-Kotera equations, et al. Finally, the symmetries are applied to investigate the initial value problems and Darboux transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, I. M., Kamran, N. and Olver, P. J., Internal, external and generalized symmetries, Adv. Math., 100, 1993, 53–100.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer-Verlag, New York, 1989.

  3. Bluman, G. W., Temuerchaolu and Anco, S., New conservation laws obtained directly from symmetry action on a known conservation law, J. Math. Anal. Appl., 322, 2006, 233–250.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bluman, G. W., Tian, S. F. and Yang, Z. Z., Nonclassical analysis of the nonlinear Kompaneets equation, J. Eng. Math., 84, 2014, 87–97.

    Article  MathSciNet  Google Scholar 

  5. Chern, S. S. and Tenenblat, K., Pseudo-spherical surfaces and evolution equations, Stud. Appl. Math., 74(1), 1986, 55–83.

    MATH  MathSciNet  Google Scholar 

  6. Chen, Y. and Hu, X. R., Lie symmetry group of the nonisospectral Kadomtsev-Petviashvili equation, Z. Naturforsch A., 62(a), 2009, 8–14.

    Google Scholar 

  7. Dodd, R. K. and Gibbon, J. D., The prolongation structure of a higher order Korteweg-de Vries equation, Proc. R. Soc. Lond. A, 358, 1978, 287–296.

    Article  MATH  MathSciNet  Google Scholar 

  8. Fan, E. G., Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A: Math. Gen., 35, 2002, 6853–6872.

    Article  MATH  Google Scholar 

  9. Galas, F., New nonlocal symmetries with pseudopotentials, J. Phys. A: Math. Gen., 25, 1992, L981–L986.

    Article  MATH  MathSciNet  Google Scholar 

  10. Guthrie, G. A. and Hickman, M. S., Nonlocal symmetries of the KdV equation, J. Math. Phys., 26, 1993, 193–205.

    Article  MathSciNet  Google Scholar 

  11. Huang, Q. and Qu, C. Z., Symmetries and invariant solutions for the geometric heat flows, J. Phys. A: Math. Theor., 40, 2007, 9343–9360.

    Article  MATH  MathSciNet  Google Scholar 

  12. Hernandez-Heredero, R. and Reyes, E. G., Nonlocal symmetries and a Darboux transformation for the Camassa-Holm equation, J. Phys. A: Math. Theor., 42, 2009, 182002.

    Article  MathSciNet  Google Scholar 

  13. Ito, M., An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders, J. Phys. Soc., 49, 1980, 771–778.

    Article  Google Scholar 

  14. Ibragimov, N. H., CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1, CRC Press, Boca Raton, Florida, 1994.

  15. Kaup, D. J., On the inverse scattering problem for cubic eigenvalue problems of the class Ψxxx +6QΨx + 6RΨ = *λΨ, Stud. Appl. Math., 62, 1980, 189–216.

    MATH  MathSciNet  Google Scholar 

  16. Kupershmidt, B. A., A super Korteweg-de Vries equation: An integrable system, Phys. Lett. A, 102, 1984, 213–215.

    Article  MathSciNet  Google Scholar 

  17. Kudryashov, N. A. and Sukharev, M. B., Exact solutions of a non-linear fifth-order equation for describing waves on water, J. Appl. Math. Mech., 65, 2001, 855–865.

    Article  MathSciNet  Google Scholar 

  18. Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21, 1968, 467–490.

    Article  MATH  MathSciNet  Google Scholar 

  19. Levi, D. and Winternitz, P., Lie point symmetries and commuting flows for equations on lattices, J. Phys. A: Math. Gen., 35, 2002, 2249–2262.

    Article  MATH  MathSciNet  Google Scholar 

  20. Lou, S. Y., A (2+1)-dimensional extension for the sine-Gordon equation, J. Phys. A: Math. Gen., 26, 1993, L789–L791.

    Article  Google Scholar 

  21. Lou, S. Y. and Hu, X. B., Infinitely many Lax pairs and symmetry constraints of the KP equation, J. Math. Phys., 38, 1997, 6401–6427.

    Article  MATH  MathSciNet  Google Scholar 

  22. Noether, E., Invariante variations probleme, Nachr. Konig. Gesell. Wissen. Gottingen, Math. Phys. Kl., 1918, 235–257 (see Transport Theory and Stat. Phys. 1, 1971, 186–207 for an English translation).

    MATH  MathSciNet  Google Scholar 

  23. Olver, P. J., Applications of Lie Groups to Differential Equations, 2nd edition, Springer-Verlag, New York, 1993.

  24. Olver, P. J., Hamiltonian and non-Hamiltonian models for water waves, Lecture Notes in Physics, vol. 195, Springer-Verlag, New York, 1984.

  25. Qu, C. Z., Potential symmetries to systems of nonlinear diffusion equations, J. Phys. A: Math. Theor., 40, 2007, 1757–1773.

    Article  MATH  Google Scholar 

  26. Qu, C. Z. and Zhang, C. R., Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method, J. Phys. A: Math. Theor., 42, 2009, 475201.

    Article  Google Scholar 

  27. Reyes, E. G., On nonlocal symmetries of some shallow water equations, J. Phys. A: Math. Theor., 40, 2007, 4467–4476.

    Article  MATH  MathSciNet  Google Scholar 

  28. Reyes, E. G., Nonlocal symmetries and the Kaup-Kupershmidt equation, J. Math. Phys., 46, 2005, 073507.

    Article  MathSciNet  Google Scholar 

  29. Sawada, K. and Kotera, K., A method for finding N-soliton solutions of the KdV and KdV-like equation, Prog. Theor. Phys., 51, 1974–1355.

  30. Tian, S. F. and Zhang, H. Q., Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations, J. Math. Anal. Appl. 371, 2010, 585–608.

    Article  MATH  MathSciNet  Google Scholar 

  31. Tian, S. F. and Zhang, H. Q., Lax pair, binary Darboux transformation and new grammian solutions of nonisospectral Kadomtsev-Petviashvili equation with the two-singular-manifold method, J. Nonlinear Math. Phys., 17(4), 2010, 491–502.

    Article  MATH  MathSciNet  Google Scholar 

  32. Tian, S. F. and Zhang, H. Q., A kind of explicit Riemann theta functions periodic waves solutions for discrete soliton equations, Commun. Nonlinear Sci. Numer. Simulat., 16, 2011, 173–186.

    Article  MATH  MathSciNet  Google Scholar 

  33. Tian, S. F. and Zhang, H. Q., Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV-Burgers equation, Theor. Math. Phys., 170(3), 2012, 287–314.

    Article  MATH  MathSciNet  Google Scholar 

  34. Tian, S. F. and Zhang, H. Q., On the integrability of a generalized variable-coefficient Kadomtsev- Petviashvili equation, J. Phys. A: Math. Theor., 45, 2012, 055203.

    Article  MathSciNet  Google Scholar 

  35. Tian, S. F. and Zhang, H. Q., On the integrability of a generalized variable-coefficient forced Korteweg-de Vries equation in fluids, Stud. Appl. Math., 132, 2014, 212–246.

    Article  MATH  MathSciNet  Google Scholar 

  36. Vinogradov, A. M. and Krasil’shchik, I. S., A method of calculation of higher symmetries of nonlinear evolution equations and nonlocal symmetries, Dokl. Akad. Nauk SSSR, 253, 1980, 1289–1293.

    MathSciNet  Google Scholar 

  37. Yan, Z. Y., The new tri-function method to multiple exact solutions of nonlinear wave equations, Phys. Scr., 78, 2008, 035001.

    Article  MathSciNet  Google Scholar 

  38. Zhang, S. L., Lou, S. Y. and Qu, C. Z., New variable separation approach: Application to nonlinear diffusion equations, J. Phys. A: Math. Gen., 36, 2003, 12223–12242.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoufu Tian.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11301527, 11371361), the Fundamental Research Funds for the Central Universities (No. 2013QNA41) and the Construction Project of the Key Discipline of Universities in Jiangsu Province During the 12th Five-Year Plans (No. SX2013008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Zhang, Y., Feng, B. et al. On the Lie algebras, generalized symmetries and darboux transformations of the fifth-order evolution equations in shallow water. Chin. Ann. Math. Ser. B 36, 543–560 (2015). https://doi.org/10.1007/s11401-015-0908-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-015-0908-6

Keywords

2000 MR Subject Classification

Navigation