Skip to main content

Stability of inverse problems for ultrahyperbolic equations

Abstract

In this paper, the authors consider inverse problems of determining a coefficient or a source term in an ultrahyperbolic equation by some lateral boundary data. The authors prove Hölder estimates which are global and local and the key tool is Carleman estimate.

This is a preview of subscription content, access via your institution.

References

  1. Amirov, A. K., Doctoral Dissertation in Mathematics and Physics, Sobolev Institute of Mathematics, Novosibirsk, 1988.

  2. Amirov, A. K., Integral Geometry and Inverse Problems for Kinetic Equations, VSP, Utrecht, 2001.

    MATH  Google Scholar 

  3. Amirov, A. K. and Yamamoto, M., A timelike Cauchy problem and an inverse problem for general hyperbolic equations, Appl. Math. Lett., 21, 2008, 885–891.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bars, I., Survey of two-time physics, Class. Quantum Grav., 18, 2001, 3113–3130.

    Article  MATH  MathSciNet  Google Scholar 

  5. Baudouin, L. and Puel, J. -P., Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 18, 2002, 1537–1554.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bellassoued, M., Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients, Applicable Analysis, 83, 2004, 983–1014.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bellassoued, M. and Yamamoto, M., Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation, J. Math. Pures Appl., 85, 2006, 193–224.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bellassoued, M. and Yamamoto, M., Carleman estimate with second large parameter for second order hyperbolic operators in a Riemannian manifold and applications in thermoelasticity cases, Applicable Analysis, 91, 2012, 35–67.

    Article  MATH  MathSciNet  Google Scholar 

  9. Bukhgeim, A. L. and Klibanov, M. V., Global uniqueness of a class of multidimensional inverse problems, Soviet Math. Dokl., 24, 1981, 244–247.

    Google Scholar 

  10. Burskii, V. P. and Kirichenko, E. V., Unique solvability of the Dirichlet problem for an ultrahyperbolic equation in a ball, Differential Equations, 44, 2008, 486–498.

    Article  MATH  MathSciNet  Google Scholar 

  11. Craig, W. and Weinstein, S., On determinism and well-posedness in multiple time dimensions, Proc. Royal Society A, 465, 2009, 3023–3046.

    Article  MATH  MathSciNet  Google Scholar 

  12. Diaz, J. B. and Young, E. C., Uniqueness of solutions of certain boundary value problems for ultrahyperbolic equations, Proc. Amer. Math. Soc., 29, 1971, 569–574.

    Article  MATH  MathSciNet  Google Scholar 

  13. Hörmander, L., Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963.

    Book  MATH  Google Scholar 

  14. Hörmander, L., Asgeirsson’s mean value theorem and related identities, J. Funct. Anal., 184, 2001, 377–401.

    Article  MATH  MathSciNet  Google Scholar 

  15. Imanuvilov, O. Y. and Yamamoto, M., Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14, 1998, 1229–1249.

    Article  MATH  MathSciNet  Google Scholar 

  16. Imanuvilov, O. Y. and Yamamoto, M., Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Problems, 17, 2001, 717–728.

    Article  MATH  MathSciNet  Google Scholar 

  17. Isakov, V., Inverse Problems for Partial Differential Equations, Springer-Verlag, Berlin, 2006.

    MATH  Google Scholar 

  18. Kenig, C. E., Ponce, G., Rolvung, C. and Vega, L., Variable coefficient Schrödinger flows for ultrahyperbolic operators, Advances in Mathematics, 196, 2005, 373–486.

    Article  MATH  MathSciNet  Google Scholar 

  19. Kenig, C. E., Ponce, G. and Vega, L., Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Inven. Math., 134, 1998, 489–545.

    Article  MATH  MathSciNet  Google Scholar 

  20. Khaĭdarov, A., On stability estimates in multidimensional inverse problems for differential equation, Soviet Math. Dokl., 38, 1989, 614–617.

    MathSciNet  Google Scholar 

  21. Klibanov, M. V., Inverse problems in the “large” and Carleman bounds, Differential Equations, 20, 1984, 755–760.

    MATH  Google Scholar 

  22. Klibanov, M. V., Inverse problems and Carleman estimates, Inverse Problems, 8, 1992, 575–596.

    Article  MATH  MathSciNet  Google Scholar 

  23. Klibanov, M. V. and Timonov, A., Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004.

    Book  MATH  Google Scholar 

  24. Kostomarov, D. P., A Cauchy problem for an ultrahyperbolic equation, Differential Equations, 38, 2002, 1155–1161.

    Article  MATH  MathSciNet  Google Scholar 

  25. Kostomarov, D. P., Problems for an ultrahyperbolic equation in the half-space with the boundedness condition for the solution, Differential Equations, 42, 2006, 261–268.

    Article  MATH  MathSciNet  Google Scholar 

  26. Lavrent’ev, M. M., Romanov, V. G. and Shishat·skiĭ, S. P., Ill-posed Problems of Mathematical Physics and Analysis, American Math. Soc., Providence, RI, 1986.

    MATH  Google Scholar 

  27. Owens, O. G., Uniqueness of solutions of ultrahyperbolic partial differential equations, Amer. J. Math., 69, 1947, 184–188.

    Article  MATH  MathSciNet  Google Scholar 

  28. Romanov, V. G., Estimate for the solution to the Cauchy problem for an ultrahyperbolic inequality, Doklady Math., 74, 2006, 751–754.

    Article  MATH  MathSciNet  Google Scholar 

  29. Sparling, G. A. J., Germ of a synthesis: space-time is spinorial, extra dimensions are time-like, Proc. Royal Soc. A, 463, 2007, 1665–1679.

    Article  MATH  MathSciNet  Google Scholar 

  30. Sulem, C. and Sulem, P. -L., The Nonlinear Schrödinger Equation, Spriner-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  31. Tegmark, M., On the dimensionality of space-time, Class. Quant. Grav., 14, 1997, L69–L75.

    Article  MATH  MathSciNet  Google Scholar 

  32. Yamamoto, M., Carleman estimates for parabolic equations and applications, Inverse Problems, 25, 2009, 123013, 75 pages.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikret Gölgeleyen.

Additional information

Dedicated to the memory of Professor Arif Amirov

This work was supported by the Council of Higher Education of Turkey (No. 16.01.2012:558-2233).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gölgeleyen, F., Yamamoto, M. Stability of inverse problems for ultrahyperbolic equations. Chin. Ann. Math. Ser. B 35, 527–556 (2014). https://doi.org/10.1007/s11401-014-0848-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-014-0848-6

Keywords

  • Ultrahyperbolic equation
  • Inverse problem
  • Stability
  • Carleman estimate

2000 MR Subject Classification

  • 35A25
  • 35R30
  • 35B35