Skip to main content
Log in

An inverse problem of identifying the radiative coefficient in a degenerate parabolic equation

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in which the principle coefficients are assumed to be strictly positive definite, the mathematical model discussed in this paper belongs to the second order parabolic equations with non-negative characteristic form, namely, there exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control framework, the problem is transformed into an optimization problem and the existence of the minimizer is established. After the necessary conditions which must be satisfied by the minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor modification of the cost functional and some a priori regularity conditions imposed on the forward operator, the convergence of the minimizer for the noisy input data is obtained in this paper. The results can be extended to more general degenerate parabolic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R. A., Sobolev Spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. Cannarsa, P., Tort, J. and Yamamoto, M., Determination of source terms in a degenerate parabolic equation, Inverse Problems, 26, 2010, 105003.

    Article  MathSciNet  Google Scholar 

  3. Cannarsa, P., Martinez, P. and Vancostenoble, J., Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47, 2008, 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  4. Cannarsa, P., Martinez, P. and Vancostenoble, J., Null controllability of degenerate heat equations, Adv. Differ. Equ., 10, 2005, 153–190.

    MATH  MathSciNet  Google Scholar 

  5. Cannarsa, P., Martinez, P. and Vancostenoble, J., Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., 3, 2004, 607–635.

    Article  MATH  MathSciNet  Google Scholar 

  6. Cannon, J. R., Lin, Y. and Xu, S., Numerical procedure for the determination of an unknown coefficient in semilinear parabolic partial differential equations, Inverse Problems, 10, 1994, 227–243.

    Article  MATH  MathSciNet  Google Scholar 

  7. Cannon, J. R. and Lin, Y., An inverse problem of finding a parameter in a semilinear heat equation, J. Math. Anal. Appl., 145, 1990, 470–484.

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, Q. and Liu, J. J., Solving an inverse parabolic problem by optimization from final measurement data, J. Comput. Appl. Math., 193, 2006, 183–203.

    Article  MATH  MathSciNet  Google Scholar 

  9. Cheng, J. and Yamamoto, M., One new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization, Inverse problems, 16(4), 2000, 31–36.

    Article  MathSciNet  Google Scholar 

  10. Choulli, M. and Yamamoto, M., Generic well-posedness of an inverse parabolic problem-the Hölder space approach, Inverse Problems, 12(3), 1996, 195–205.

    Article  MATH  MathSciNet  Google Scholar 

  11. Choulli, M. and Yamamoto, M., An inverse parabolic problem with non-zero initial condition, Inverse Problems, 13, 1997, 19–27.

    Article  MATH  MathSciNet  Google Scholar 

  12. Dehghan, M., Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement, Numer. Meth. Part. Diff. Equ., 21, 2005, 611–622.

    Article  MATH  MathSciNet  Google Scholar 

  13. Dehghan, M., Determination of a control function in three-dimensional parabolic equations, Math. Comput. Simul., 61, 2003, 89–100.

    Article  MATH  MathSciNet  Google Scholar 

  14. Demir, A. and Hasanov A., Identification of the unkonwn diffusion coefficient in a linear parabolic equation by the semigroup approach, J. Math. Anal. Appl., 340, 2008, 5–15.

    Article  MATH  MathSciNet  Google Scholar 

  15. Deng, Z. C., Yu, J. N. and Yang L., An inverse problem of determining the implied volatility in option pricing, J. Math. Anal. Appl., 340(1), 2008, 16–31.

    Article  MATH  MathSciNet  Google Scholar 

  16. Deng, Z. C., Yu, J. N. and Yang L., Optimization method for an evolutional type inverse heat conduction problem, J. Phys. A: Math. Theor., 41, 2008, 035201.

    Article  MathSciNet  Google Scholar 

  17. Deng, Z. C., Yu, J. N. and Yang L., Identifying the coefficient of first-order in parabolic equation from final measurement data, Math. Comput. Simul., 77, 2008, 421–435.

    Article  MATH  MathSciNet  Google Scholar 

  18. Deng, Z. C. and Yang, L., An inverse problem of identifying the radiative coefficient in a degenerate parabolic equation, 2013. arXiv: 1309.7421

    Google Scholar 

  19. Egger, H. and Engl, H. W., Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates, Inverse Problems, 21, 2005, 1027–1045.

    Article  MATH  MathSciNet  Google Scholar 

  20. Engl, H. W., Hanke, M. and Neubauer, A., Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996.

    Book  MATH  Google Scholar 

  21. Engl, H. W. and Zou, J., A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction, Inverse Problems, 16, 2000, 1907–1923.

    Article  MATH  MathSciNet  Google Scholar 

  22. Imanuvilov, O. Y. and Yamamoto, M., Lipschitz stability in inverse parabolic problems by the Carleman estimates, Inverse Problems, 14, 1998, 1229–1245.

    Article  MATH  MathSciNet  Google Scholar 

  23. Isakov, V., Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 1998.

    Book  MATH  Google Scholar 

  24. Isakov, V. and Kindermann, S., Identification of the diffusion coefficient in a one-dimensional parabolic equation, Inverse Problems, 16, 2000, 665–680.

    Article  MATH  MathSciNet  Google Scholar 

  25. Jiang, L. S. and Tao, Y. S., Identifying the volatility of underlying assets from option prices, Inverse Problems, 17, 2001, 137–155.

    Article  MATH  MathSciNet  Google Scholar 

  26. Jiang, L. S., Chen, Q. H., Wang, L. J. and Zhang, J. E., A new well-posed algorithm to recover implied local volatility, Quantitative Finance, 3, 2003, 451–457.

    Article  MathSciNet  Google Scholar 

  27. Jiang, L. S. and Bian, B. J., Identifying the principal coefficient of parabolic equations with non-divergent form, Journal of Physics: Conference Series, 12, 2005, 58–65.

    Google Scholar 

  28. Kaltenbacher, B. and Klibanov, M. V., An inverse problem for a nonlinear parabolic equation with applications in population dynamics and magnetics, SIAM J. Math. Anal., 39(6), 2008, 1863–1889.

    Article  MATH  MathSciNet  Google Scholar 

  29. Keung, Y. L. and Zou, J., Numerical identifications of parameters in parabolic systems, Inverse Problems, 14, 1998, 83–100.

    Article  MATH  MathSciNet  Google Scholar 

  30. Kirsch. A., An Introduction to the Mathematical Theory of Inverse Problem, Springer-Verlag, New York, 1999.

    Google Scholar 

  31. Ladyzenskaya, O., Solonnikov, V. and Ural’Ceva, N., Linear and Quasilinear Equations of Parabolic Type, Vol. 23, A. M. S., Providence, RI, 1968.

    Google Scholar 

  32. Liu, J. J., Regularization Method and Application for the Ill-posed Problem, Science Press, Beijing, 2005.

    Google Scholar 

  33. Oleinik, O. A. and Radkevič, E. V., Second Order Differential Equations with Non-negative Characteristic Form, A. M. S., Rhode Island and Plenum Press, New York, 1973.

    Book  Google Scholar 

  34. Rundell, W., The determination of a parabolic equation from initial and final data, Proc. Am. Math. Soc., 99, 1987, 637–642.

    Article  MATH  MathSciNet  Google Scholar 

  35. Samarskii, A. A. and Vabishchevich, P. N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter GmbH & Co. KG, Berlin, 2007.

    MATH  Google Scholar 

  36. Tikhonov, A. and Arsenin, V., Solutions of Ill-posed Problems, Geology Press, Beijing, 1979.

    Google Scholar 

  37. Tort, J. and Vancostenoble, J., Determination of the insolation function in the nonlinear Sellers climate model, Ann. I. H. Poincaré-AN, 29, 2012, 683–713.

    Article  MATH  MathSciNet  Google Scholar 

  38. Wu, Z. Q., Yin, J. X. and Wang, C. P., Elliptic and Parabolic Equations, Science Press, Beijing, 2003.

    Google Scholar 

  39. Yang, L., Yu, J. N. and Deng, Z. C., An inverse problem of identifying the coefficient of parabolic equation, Appl. Math. Model., 32(10), 2008, 1984–1995.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuicha Deng.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11061018, 11261029), the Youth Foundation of Lanzhou Jiaotong University (No. 2011028), the Long Yuan Young Creative Talents Support Program (No. 252003) and the Joint Funds of the Gansu Provincial Natural Science Foundation of China (No. 1212RJZA043).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Yang, L. An inverse problem of identifying the radiative coefficient in a degenerate parabolic equation. Chin. Ann. Math. Ser. B 35, 355–382 (2014). https://doi.org/10.1007/s11401-014-0836-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-014-0836-x

Keywords

2000 MR Subject Classification

Navigation