Skip to main content

On the Cauchy Problem describing an electron-phonon interaction


In this paper, a model is derived to describe a quartic anharmonic interatomic interaction with an external potential involving a pair electron-phonon. The authors study the corresponding Cauchy Problem in the semilinear and quasilinear cases.

This is a preview of subscription content, access via your institution.


  1. Braun, O. M., Fei, Z., Kivshar, Y. S., et al., Kinks in the Klein-Gordon model with anharmonic interatomic interactions: a variational approach, Physics Letters A, 157, 1991, 241–245.

    Article  Google Scholar 

  2. Caetano, F., On the existence of weak solutions to the Cauchy problem for a class of quasilinear hyperbolic equations with a source term, Rev. Mat. Complut., 17, 2004, 147–167.

    MATH  MathSciNet  Google Scholar 

  3. Dias, J. P. and Figueira, M., Existence of weak solutions for a quasilinear version of Benney equations, J. Hyp. Diff. Eq., 4, 2007, 555–563.

    Article  MATH  MathSciNet  Google Scholar 

  4. Dias, J. P., Figueira, M. and Frid, H., Vanishing viscosity with short wave-long wave interactions for systems of conservation laws, Arch. Ration. Mech. Anal., 196, 2010, 981–1010.

    Article  MATH  MathSciNet  Google Scholar 

  5. Dias, J. P., Figueira, M. and Oliveira, F., Existence of local strong solutions for a quasilinear Benney system, C. R. Math. Acad. Sci. Paris, 344, 2007, 493–496.

    MATH  MathSciNet  Google Scholar 

  6. Ginibre, J., Tsutsumi, Y. and Velo, G., On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151, 1997, 384–486.

    Article  MATH  MathSciNet  Google Scholar 

  7. Kato, T., Quasi-linear equations of evolution, with applications to partial differential equations, Lecture Notes in Mathematics, Springer-Verlag, New York, 448, 1975, 25–70.

    Google Scholar 

  8. Konotop, V., Localized electron-phonon states originated by a three-wave interaction, Physical Review B, 55(18), 1997, R11926–R11928.

    Article  Google Scholar 

  9. Linares, F. and Matheus, C., Well-posedness for the 1D Zakharov-Rubenchik system, Adv. Diff. Eqs., 14, 2009, 261–288.

    MATH  MathSciNet  Google Scholar 

  10. Oliveira, F., Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation, Physica D, 175, 2003, 220–240.

    Article  MATH  MathSciNet  Google Scholar 

  11. Oliveira, F., Adiabatic limit of the Zakharov-Rubenchik equation, Rep. Math. Phys., 61, 2008, 13–27.

    Article  MATH  MathSciNet  Google Scholar 

  12. Ozawa, T. and Tsutsumi, Y., Existence and smoothing effect of solutions to the Zakharov equation, Publ. Res. Inst. Math. Sci., 28, 1992, 329–361.

    Article  MATH  MathSciNet  Google Scholar 

  13. Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Vol. 2, Fourier Analysis, Self-Adjointness, Academic Press, New York, London, 1975.

    Google Scholar 

  14. Serre, D. and Shearer, J., Convergence with physical viscosity for nonlinear elasticity, unpublished manuscript, 1993.

  15. Shibata, Y. and Tsutsumi, Y., Local existence of solutions for the initial boundary problem of fully nonlinear wave equation, Nonlinear Anal. TMA, 11, 1987, 335–365.

    Article  MATH  MathSciNet  Google Scholar 

  16. Wang, X. and Liang, X., Electron-phonon interaction in ternary mixed crystals, Physical Review B, 42, 1990, 8915–8922.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to João-Paulo Dias.

Additional information

Project supported by the Fundaçõao para a Ciencia e Tecnologia, Financiamento Base (Nos. 2008-ISFL-1-209, 2008-ISFL-1-297) and the Fundação para a Ciencia e Tecnologia Grant (No. PTDC/MAT/110613/2009).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dias, JP., Figueira, M. & Oliveira, F. On the Cauchy Problem describing an electron-phonon interaction. Chin. Ann. Math. Ser. B 32, 483–496 (2011).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


2000 MR Subject Classification