Abstract
Curvature properties are studied for the Sasaki metric on the (1, 1) tensor bundle of a Riemannian manifold. As an application, examples of almost para-Nordenian and para-Kähler-Nordenian B-metrics are constructed on the (1, 1) tensor bundle by looking at the Sasaki metric. Also, with respect to the para-Nordenian B-structure, paraholomorphic conditions for the complete lifts of vector fields are analyzed.
This is a preview of subscription content, access via your institution.
References
Aso, K., Notes on some properties of the sectional curvature of the tangent bundle, Yokohama Math. J., 29(3), 1981, 1–5.
Cengiz, N. and Salimov, A. A., Complete lifts of derivations to tensor bundles, Bol. Soc. Mat. Mexicana, 8(3), 2002, 75–82.
Cengiz, N. and Salimov, A. A., Diagonal lift in the tensor bundle and its applications, Appl. Math. Comput., 142, 2003, 309–319.
Cordero, L. A., Dodson, C. T. J. and de Leon, M., Differential Geometry of Frame Bundles, Academic Publishers Group, Dordrecht, 1986.
Dombrowski, P., On the geometry of the tangent bundles, J. Reine and Angew. Math., 210, 1962, 73–88.
Gancarzewicz, J. and Rahmani, N., Relevent horizontal des connexions lineaires au fibre vectoriel associe avec le fibre principal des repres lineaires, Annales Polinici Math., 48, 1988, 281–289.
Gezer, A. and Salimov, A. A., Almost complex structures on the tensor bundles, Arab. J. Sci. Eng. Sect. A Sci., 33(2), 2008, 283–296.
Gudmundsson, S. and Kappos, E., On the geometry of the tangent bundles, Expo. Math., 20, 2002, 1–41.
Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 250, 1971, 124–129.
Kruchkovich, G. I., Hypercomplex structure on manifold, I, Tr. Sem. Vect. Tens. Anal., Moscow Univ., 16, 1972, 174–201.
Lai, K. F. and Mok, K. P., On the differential geometry of the (1,1) tensor bundle, Tensor (New Series), 63(1), 2002, 15–27.
Ledger, A. J. and Yano, K., Almost complex structures on the tensor bundles, J. Diff. Geom., 1, 1967, 355–368.
Mok, K. P., On differential geometry of frame bundles of Riemannian manifolds, J. Reine Angew. Math., 302, 1976, 16–31.
Mok, K. P., Metrics and connections on the cotangent bundle, Kodai Math. Sem. Rep., 28(2–3), 1976/1977, 226–238.
Mok, K. P., Lifts of vector fields to tensor bundles, Geom. Dedicata, 8(1), 1979, 61–67.
Musso, E. and Tricerri, F., Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl., 150(4), 1988, 1–19.
Salimov, A. A. and Cengiz, N., Lifting of Riemannian metrics to tensor bundles, Russian Math. (IZ. VUZ.), 47(11), 2003, 47–55.
Salimov, A. A., Gezer, A. and Akbulut, K., Geodesics of Sasakian metrics on tensor bundles, Mediterr. J. Math., 6(2), 2009, 137–149.
Salimov, A. A., Iscan, M. and Etayo, F., Paraholomorphic B-manifold and its properties, Topology Appl., 154(4), 2007, 925–933.
Salimov, A. A., Iscan, M. and Akbulut, K., Some remarks concerning hyperholomorphic B-manifolds, Chin. Ann. Math., 29B(6), 2008, 631–640.
Salimov, A. A. and Agca, F., On para-Nordenian structures, Ann. Polon. Math., 99(2), 2010, 193–200.
Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10, 1958, 338–358.
Szilasi, J., Notes on tensorial connections, Publ. Math. Debrecen, 31(1–2), 1984, 29–37.
Yano, K. and Ako, M., On certain operators associated with tensor field, Kodai Math. Sem. Rep., 20, 1968, 414–436.
Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973.
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Scientific and Technological Research Council of Turkey (No. TBAG-108T590).
Rights and permissions
About this article
Cite this article
Salimov, A., Gezer, A. On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chin. Ann. Math. Ser. B 32, 369–386 (2011). https://doi.org/10.1007/s11401-011-0646-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11401-011-0646-3
Keywords
- Tensor bundle
- Sasaki metric
- Vertical and horizontal lift
- B-manifold
2000 MR Subject Classification
- 55R10
- 53C07
- 53C15