Skip to main content
Log in

Dispersive blow-up II. Schrödinger-type equations, optical and oceanic rogue waves

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Addressed here is the occurrence of point singularities which owe to the focusing of short or long waves, a phenomenon labeled dispersive blow-up. The context of this investigation is linear and nonlinear, strongly dispersive equations or systems of equations. The present essay deals with linear and nonlinear Schrödinger equations, a class of fractional order Schrödinger equations and the linearized water wave equations, with and without surface tension. Commentary about how the results may bear upon the formation of rogue waves in fluid and optical environments is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, Dover, New York, 1964.

    MATH  Google Scholar 

  2. Akhmediev, N., Soto-Crespo, J. M. and Ankiewicz, A., How to excite a rogue wave, Phy. Rev. A, 80, 2009, 043818, 1–17.

    Article  Google Scholar 

  3. Ben-Artzi, M. and Saut, J.-C., Uniform decay estimates for a class of oscillatory integrals and applications, Diff. Int. Eqs., 12, 1999, 137–145.

    MATH  MathSciNet  Google Scholar 

  4. Benjamin, T. B. Bona, J. L. and Mahony, J. J., Model equations for long waves in nonlinear, dispersive media, Philos. Trans. Royal Soc. London, Ser. A, 272, 1972, 47–78.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bona, J. L. and Chen, H. Q., Well-posedness for regularized dispersive wave equations, Disc. Cont. Dyn. Systems A, 23, 2009, 1253–1275.

    MATH  MathSciNet  Google Scholar 

  6. Bona, J. L., Chen, M. and Saut, J.-C., Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory, J. Nonlinear Sci., 12, 2002, 283–318.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bona, J. L., Chen, M. and Saut, J.-C., Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: The nonlinear theory, Nonlinearity, 17, 2004, 925–952.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bona, J. L. and Saut, J.-C., Dispersive blow-up of solutions of generalized Korteweg-de Vries equations, J. Diff. Eqs., 103, 1993, 3–57.

    Article  MATH  MathSciNet  Google Scholar 

  9. Bona, J. L. and Tzvetkov, N., Sharp well-posedness results for the BBM equation, Disc. Cont. Dyn. Systems A, 23, 2009, 1241–1252.

    MATH  MathSciNet  Google Scholar 

  10. Brenner, P., The Cauchy problem for systems in l p and l p,α, Ark. Mat., 11, 1973, 75–101.

    Article  MATH  MathSciNet  Google Scholar 

  11. Constantin, P. and Saut, J.-C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1, 1988, 413–439.

    MATH  MathSciNet  Google Scholar 

  12. Dias, F., Guyenne, P., Pushkarev, A. N., et al., Wave turbulence in one-dimensional models, Physica D, 152–153, 2001, 573–619.

    MathSciNet  Google Scholar 

  13. Dudley, J., Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys., 78, 2006, 1135–1184.

    Article  Google Scholar 

  14. Dudley, J., Genty, G. and Eggleton, B. J., Harnessing and control of optical rogue waves in supercontinum generation, Optics Express, 16, 2008, 3644–3651.

    Article  Google Scholar 

  15. Dysthe, H., Krogstad, E. and Müller, P., Oceanic Rogue Waves, Ann. Rev. Fluid Mech., 40, 2008, 287–310.

    Article  Google Scholar 

  16. Ghidaglia, J.-M. and Jaffard, S., Personal communication.

  17. Hörmander, L., Estimates for translation invariant operators in L p, Acta Math., 104, 1960, 93–140.

    Article  MATH  MathSciNet  Google Scholar 

  18. Kharif, C. and Pelinovsky, E., Physical mechanism of rogue wave phenomenon, European J. of Mechanics, B/Fluids, 22, 2003, 603–634.

    Article  MATH  MathSciNet  Google Scholar 

  19. Kharif, C., Pelinovsky, E. and Slunyaev, A., RogueWaves in the Ocean, Springer-Verlag, Berlin-Heidelberg, 2009.

    Google Scholar 

  20. Linares, F. and Scialom, M., On the smoothing properties of solutions to the modified Korteweg-de Vries equation, J. Diff. Eqs., 106, 1993, 141–154.

    Article  MATH  MathSciNet  Google Scholar 

  21. Miyachi, A., On some singular Fourier multipliers, J. Fac. Sci. Tokyo Section I A, 28, 1981, 267–315.

    MATH  MathSciNet  Google Scholar 

  22. Sidi, A., Sulem, C. and Sulem, P. L., On the long time behavior of a generalized KdV equation, Acta Applicandae Mathematicae, 7, 1986, 35–47.

    Article  MATH  MathSciNet  Google Scholar 

  23. Solli, D. R., Ropers, C., Koonath, P. and Jalali, B., Optical rogue waves, Nature, 450, 2007, 1054–1057.

    Article  Google Scholar 

  24. Stenflo, L. and Marklund, M., Rogue waves in the atmosphere, 2009. arXiv:0911.1654v1

  25. Tsutsumi, Y., L 2 solutions for the nonlinear Schrödinger equation and nonlinear groups, Funkcial. Ekvac., 30, 1987, 115–125.

    MATH  MathSciNet  Google Scholar 

  26. Voronovich, V. V., Shrira, V. I. and Thomas, G., Can bottom friction suppress “freak wave” formation, J. Fluid Mech., 604, 2008, 263–296.

    Article  MATH  MathSciNet  Google Scholar 

  27. Wainger, S., Special trigonometric series in k-dimensions, Mem. American Math. Soc., 59, 1965.

  28. Whitham, G. B., Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.

    MATH  Google Scholar 

  29. Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 1968, 86–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry L. Bona.

Additional information

Dedicated to Professor Roger Temam with Friendship and Admiration

Project supported by the Agence Nationale de la Recherche, France (No. ANR-07-BLAN-0250), the University of Illinois at Chicago, the Wolfgang Pauli Institute in Vienna, the University of Illinois at Chicago and the Université de Paris 11.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bona, J.L., Saut, JC. Dispersive blow-up II. Schrödinger-type equations, optical and oceanic rogue waves. Chin. Ann. Math. Ser. B 31, 793–818 (2010). https://doi.org/10.1007/s11401-010-0617-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-010-0617-0

Keywords

2000 MR Subject Classification

Navigation