Skip to main content
Log in

Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Numerical approximations of Cahn-Hilliard phase-field model for the two-phase incompressible flows are considered in this paper. Several efficient and energy stable time discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both the matched density case and the variable density case are constructed, and are shown to satisfy discrete energy laws which are analogous to the continuous energy laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, S. M. and Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. Mater., 27, 1979, 1085–1095.

    Article  Google Scholar 

  2. Anderson, D. M., McFadden, G. B. and Wheeler, A. A., Diffuse-interface methods in fluid mechanics, 30, 1998, 139–165.

    MathSciNet  Google Scholar 

  3. Becker, R., Feng, X. and Prohl, A., Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow, SIAM J. Numer. Anal., 46(4), 2008, 1704–1731.

    Article  MATH  MathSciNet  Google Scholar 

  4. Caffarelli, L. A. and Muler, N. E., An L bound for solutions of the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 133(2), 1995, 129–144.

    Article  MATH  MathSciNet  Google Scholar 

  5. Cahn, J. W. and Hilliard, J. E., Free energy of a nonuniform system, I: Interfacial free energy, J. Chem. Phys., 28, 1958, 258–267.

    Article  Google Scholar 

  6. Condette, N., Melcher, C. and Süli, E., Spectral approximation of pattern-forming nonlinear evolution equations with double-well potentials of quadratic growth, Math. Comp., to appear.

  7. Feng, X., He, Y. and Liu, C., Analysis of finite element approximations of a phase field model for two-phase fluids (electronic), Math. Comp., 76(258), 2007, 539–571.

    Article  MATH  MathSciNet  Google Scholar 

  8. Guermond, J. L., Minev, P. and Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195, 2006, 6011–6045.

    Article  MATH  MathSciNet  Google Scholar 

  9. Guermond, J. L. and Quartapelle, L., A projection FEM for variable density incompressible flows, J. Comput. Phys., 165(1), 2000, 167–188.

    Article  MATH  MathSciNet  Google Scholar 

  10. Guermond, J. L. and Salgado, A., A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys., 228(8), 2009, 2834–2846.

    Article  MATH  MathSciNet  Google Scholar 

  11. Gurtin, M. E., Polignone, D. and Vinals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6(6), 1996, 815–831.

    Article  MATH  MathSciNet  Google Scholar 

  12. Jacqmin, D., Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 155(1), 2007, 96–127.

    Article  MathSciNet  Google Scholar 

  13. Kessler, D., Nochetto, R. H. and Schmidt, A., A posteriori error control for the Allen-Cahn problem: circumventing Gronwall’s inequality, M2AN Math. Model. Numer. Anal., 38(1), 2004, 129–142.

    Article  MATH  MathSciNet  Google Scholar 

  14. Lin, P., Liu, C. and Zhang, H., An energy law preserving C 0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics, J. Comput. Phys., 227(2), 2007, 1411–1427.

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, C. and Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179(3–4), 2003, 211–228.

    Article  MATH  MathSciNet  Google Scholar 

  16. Lowengrub, J. and Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 454(1978), 1998, 2617–2654.

    Article  MATH  MathSciNet  Google Scholar 

  17. Nochetto, R. and Pyo, J. H., The gauge-Uzawa finite element method part I: the Navier-Stokes equations, SIAM J. Numer. Anal., 43, 2005, 1043–1068.

    Article  MATH  MathSciNet  Google Scholar 

  18. Prohl, A., Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations, Advances in Numerical Mathematics, BG Teubner, Stuttgart, 1997.

    MATH  Google Scholar 

  19. Pyo, J. and Shen, J., Gauge-uzawa methods for incompressible flows with variable density, J. Comput. Phys., 221, 2007, 181–197.

    Article  MATH  MathSciNet  Google Scholar 

  20. Rannacher, R., On Chorin’s projection method for the incompressible Navier-Stokes equations, Lecture Notes in Mathematics, 1530, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  21. Shen, J., Efficient spectral-Galerkin method I. direct solvers for second- and fourth-order equations by using Legendre polynomials, SIAM J. Sci. Comput., 15, 1994, 1489–1505.

    Article  MATH  MathSciNet  Google Scholar 

  22. Shen, J., On error estimates of projection methods for the Navier-Stokes equations: second-order schemes, Math. Comp, 65, 1996, 1039–1065.

    Article  MATH  MathSciNet  Google Scholar 

  23. Shen, J. and Yang, X., A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32, 2010, 1159–1179.

    Article  Google Scholar 

  24. Shen, J. and Yang, X., Numerical approximations of allen-cahn and cahn-hilliard equations, Discrete and Continuous Dynamical Systems, Series A, 28, 2010, 1669–1691.

    Article  Google Scholar 

  25. Walkington, N. J., Compactness properties of the DG and CG time stepping schemes for parabolic equations, SIAM J. Numer. Anal., 47(6), 2010, 4680–4710.

    Article  MathSciNet  Google Scholar 

  26. Yue, P., Feng, J. J., Liu, C., et al., A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech, 515, 2004, 293–317.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Additional information

Dedicated to Professor Roger Temam on the Occasion of his 70th Birthday

Project supported by the National Science Foundation (No. DMS-0915066)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J., Yang, X. Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. Ser. B 31, 743–758 (2010). https://doi.org/10.1007/s11401-010-0599-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-010-0599-y

Keywords

2000 MR Subject Classification

Navigation