Skip to main content
Log in

Geometry of Ricci Solitons*

  • ORIGINAL ARTICLES
  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Ricci solitons are natural generalizations of Einstein metrics on one hand, and are special solutions of the Ricci flow of Hamilton on the other hand. In this paper we survey some of the recent developments on Ricci solitons and the role they play in the singularity study of the Ricci flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M., Ricci curvature bounds and Einstein metrics on compact manifolds, J. A. M. S., 2, 1989, 455-490.

    MATH  Google Scholar 

  2. Aubin, T., Équations du type Monge-Ampère sur les variétés Kähleriennes compactes, Bull. Sci. Math., 102(2), 1978, 63-95.

    MATH  MathSciNet  Google Scholar 

  3. Bando, S. and Mabuchi, T., Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 11-40.

  4. Bando, S., Kasue, A. and Nakajima, H., On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math., 97, 1989, 313-349.

    Article  MATH  MathSciNet  Google Scholar 

  5. Besse, A. L., Einstein Manifolds, Ergebnisse, Ser. 3, 10, Springer-Verlag, Berlin, 1987.

  6. Bryant, R., Local existence of gradient Ricci solitons, unpublished.

  7. Bryant, R., Gradient Kähler Ricci solitons, arXiv.org/abs/math.DG/0407453.

  8. Bryant, R., Goldschmidt, H., Morgan, J. and Ilmanen, T., in preparation.

  9. Buzzanca, C., The Lichnerowicz Laplacian on tensors (in Italian), Boll. Un. Mat. Ital. B, 3, 1984, 531-541.

    MathSciNet  Google Scholar 

  10. Cao, H.-D., On Harnack’s inequalities for the Kähler-Ricci flow, Invent. Math., 109(2), 1992, 247-263.

    Article  MATH  MathSciNet  Google Scholar 

  11. Cao, H.-D., Existence of gradient Kähler-Ricci solitons, Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), A. K. Peters (ed.), Wellesley, MA, 1996, 1-16.

  12. Cao, H.-D., Limits of solutions to the Kähler-Ricci flow, J. Differential Geom., 45, 1997, 257-272.

    MATH  MathSciNet  Google Scholar 

  13. Cao, H.-D., On dimension reduction in the Kähler-Ricci flow, Comm. Anal. Geom., 12, 2004, 305-320.

    MATH  MathSciNet  Google Scholar 

  14. Cao, H.-D. and Hamilton, R. S., Gradient Kähler-Ricci solitons and periodic orbits, Comm. Anal. Geom., 8, 2000, 517-529.

    MATH  MathSciNet  Google Scholar 

  15. Cao, H.-D., Hamilton, R. S. and Ilmanen, T., Gaussian densities and stability for some Ricci solitons, arXiv:math.DG/0404165.

  16. Cao, H.-D. and Sesum, N., A compactness result for Kähler-Ricci solitons, arXiv:math.DG/0504526.

  17. Cao, H.-D. and Zhu, X. P., Ricci flow and its applications to three-manifolds, monograph in preparation.

  18. Chau, A. and Tam, L.-F., Gradient Kähler-Ricci solitons and a uniformization conjecture, arXiv:math.DG/0310198.

  19. Chave, T. and Valent, G., On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nuclear Phys. B, 478, 1996, 758-778.

    Article  MATH  MathSciNet  Google Scholar 

  20. Cheeger, J., Gromov, M. and Taylor, M., Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom., 17, 1982, 15-53.

    MATH  MathSciNet  Google Scholar 

  21. Chen, B. L. and Zhu, X. P., Complete Riemannian manifolds with pointwise pinched curvature, Invent. Math., 140(2), 2000, 423-452.

    Article  MATH  MathSciNet  Google Scholar 

  22. Chen, B. L. and Zhu, X. P., On complete noncompact Kähler manifolds with positive bisectional curvature, Math. Ann., 327, 2003, 1-23.

    MATH  MathSciNet  Google Scholar 

  23. Chen, B. L. and Zhu, X. P., Volume growth and curvature decay of positively curved Kähler manifolds, Quart. J. of Pure and Appl. Math., 1(1), 2005, 68-108.

    MATH  Google Scholar 

  24. Chen, B. L., Tang, S. H. and Zhu, X. P., A uniformization theorem of complete noncompact Kähler surfaces with positive bisectional curvature, J. Diff. Geom., 67, 2004, 519-570.

    Google Scholar 

  25. Cheng, S. Y., Li, P. and Yau, S. T., On the upper estimate of the heat kernel of complete Riemannian manifold, Amer. J. Math., 103(5), 1981, 1021-1063.

    MATH  MathSciNet  Google Scholar 

  26. Chow, B. and Lu, P., On the asymptotic scalar curvature ratio of complete type I-like ancient solutions to the Ricci flow on noncompact 3-manifolds, Comm. Anal. Geom., 12, 2004, 59-91.

    MATH  MathSciNet  Google Scholar 

  27. Dai, X., Wang, X. and Wei, W., On the stability of Riemannian manifolds with parallel spinors, Invent. Math., 161(1), 2005, 151-176.

    Article  MATH  MathSciNet  Google Scholar 

  28. Derdzinski, A. and Maschler, G., Compact Ricci Solitons, in preparation.

  29. Drees, G., Asymptotically flat manifold of nonnegative curvature, Diff. Geom. Appl., 4, 1994, 77-90.

    Article  MATH  MathSciNet  Google Scholar 

  30. Eschenburg, J., Schroeder, V. and Strake, M., Curvature at infinity of open nonnegatively curved manifold, J. Diff. Geom., 30, 1989, 155-166.

    MATH  MathSciNet  Google Scholar 

  31. Feldman, M., Ilmanen, T. and Knopf, D., Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons, J. Diff. Geom., 65, 2003, 169-209.

    MATH  Google Scholar 

  32. Friedan, D., Nonlinear models in 2 + ε dimensions, Ann. Phys., 163, 1985, 318-419.

    MATH  MathSciNet  Google Scholar 

  33. Futaki, A., An obstruction to the existence of Einstein Kähler metrics, Invent. Math., 73, 1983, 437-443.

    Article  MATH  MathSciNet  Google Scholar 

  34. Gasqui, J. and Goldschmidt, H., On the geometry of the complex quadric, Hokkaido Math. J., 20, 1991, 279-312.

    MATH  MathSciNet  Google Scholar 

  35. Gasqui, J. and Goldschmidt, H., Radon transforms and spectral rigidity on the complex quadrics and the real Grassmannians of rank two, J. Reine Angew. Math., 480, 1996, 1-69.

    MATH  MathSciNet  Google Scholar 

  36. Gasqui, J. and Goldschmidt, H., Radon Transforms and the Rigidity of the Grassmannians, Princeton University Press, 2004.

  37. Goldschmidt, H., private communication.

  38. Greene, R. E. and Wu, H., Gap theorems for noncompact Riemannian manifolds, Duke Math. J., 49, 1982, 731-756.

    Article  MATH  MathSciNet  Google Scholar 

  39. Gromoll, D. and Meyer, W., On complete open manifolds of positive curvature, Ann. Math., 90, 1969, 75-90.

    MATH  MathSciNet  Google Scholar 

  40. Guenther, C., Isenberg, J. and Knopf, D., Stability of the Ricci flow at Ricci-flat metrics, Comm. Anal. Geom., 10, 2002, 741-777.

    MATH  MathSciNet  Google Scholar 

  41. Hamilton, R. S., Three manifolds with positive Ricci curvature, J. Diff. Geom., 17, 1982, 255-306.

    MATH  MathSciNet  Google Scholar 

  42. Hamilton, R. S., Four-manifolds with positive curvature operator, J. Diff. Geom., 24, 1986, 153-179.

    MATH  MathSciNet  Google Scholar 

  43. Hamilton, R. S., The Ricci flow on surfaces, Contemp. Math., 71, 1988, 237-261.

    MATH  MathSciNet  Google Scholar 

  44. Hamilton, R. S., The Harnack estimate for the Ricci flow, J. Diff. Geom., 37, 1993, 225-243.

    MATH  MathSciNet  Google Scholar 

  45. Hamilton, R. S., Eternal solutions to the Ricci flow, J. Diff. Geom., 38, 1993, 1-11.

    MATH  MathSciNet  Google Scholar 

  46. Hamilton, R. S., The formation of singularities in the Ricci flow, Surveys in Differential Geometry (Cambridge, MA, 1993), 2, International Press, Combridge, MA, 1995, 7-136.

  47. Huisken, G., Ricci deformation of the metric on a Riemanian mnifold, J. Diff. Geom., 21, 1985, 47-62.

    MATH  MathSciNet  Google Scholar 

  48. Ivey, T., Ricci solitons on compact three-manifolds, Diff. Geom. Appl., 3, 1993, 301-307.

    Article  MATH  MathSciNet  Google Scholar 

  49. Koiso, N., On rotationally symmmetric Hamilton’s equation for Kähler-Einstein metrics, Recent Topics in Diff. Anal. Geom., Adv. Studies Pure Math., 18-I, Academic Press, Boston, MA, 1990, 327-337.

  50. Mok, N., Siu, Y. T. and Yau, S. T., The Poincaré-Lelong equation on complete Kähler manifolds, Compositio Math., 44, 1981, 183-218.

    MathSciNet  Google Scholar 

  51. Ni, L., Ancient solution to Kahler-Ricci flow, arXiv:math:math.DG.0502494, 2005.

  52. Ni, L. and Tam, L. F., Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature, J. Diff. Geom., 64(3), 2003, 457-524.

    MATH  MathSciNet  Google Scholar 

  53. Page, D., A compact rotating gravitational instanton, Phys. Lett., 79B, 1978, 235-238.

    Google Scholar 

  54. Perelmann, G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159 v1 November 11, 2002.

  55. Perelmann, G., Ricci flow with surgery on three manifolds, arXiv:math.DG/0303109 v1 March 10, 2003.

  56. Rothaus, O. S., Logarithmic Sobolev inequalities and the spectrum of Schrödinger opreators, J. Funct. Anal., 42(1), 1981, 110-120.

    MATH  MathSciNet  Google Scholar 

  57. Sesum, N., Limiting behaviour of the Ricci flow, arXiv:DG.math.DG/0402194.

  58. Tian, G., On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., 101, 1990, 101-172.

    Article  MATH  MathSciNet  Google Scholar 

  59. Tian, G. and Zhu, X. H., Uniqueness of Kähler-Ricci solitons, Acta Math., 184, 2000, 271-305.

    MATH  MathSciNet  Google Scholar 

  60. Tian, G. and Zhu, X. H., A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comment. Math. Helv., 77, 2002, 297-325.

    Article  MATH  MathSciNet  Google Scholar 

  61. Wang, X. J. and Zhu, X. H., Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math., 188(1), 2004, 87-103.

    Article  MATH  MathSciNet  Google Scholar 

  62. Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampèere equation, I, Comm. Pure Appl. Math., 31, 1978, 339-411.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-Dong Cao.

Additional information

(Dedicated to the memory of Shiing-Shen Chern)

* Partially supported by the John Simon Guggenheim Memorial Foundation and NSF grants DMS-0354621 and DMS-0506084.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, HD. Geometry of Ricci Solitons*. Chin. Ann. Math. Ser. B 27, 121–142 (2006). https://doi.org/10.1007/s11401-005-0379-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-005-0379-2

Keywords

2000 MR Subject Classification

Navigation