Naor M, Pinkas B. Oblivious transfer and polynomial evaluation. In Proc. the 31st Annual ACM Symposium on Theory of Computing, May 1999, pp.245-254. DOI: https://doi.org/10.1145/301250.301312.
Even S, Goldreich O, Lempel A. A randomized protocol for signing contracts. In Proc. CRYPTO’82, Aug. 1982, pp.205- 210. DOI: https://doi.org/10.1007/978-1-4757-0602-4_19.
Cianciullo L, Ghodosi H. Efficient information theoretic multi-party computation from oblivious linear evaluation. In Proc. the 12th IFIP WG 11.2 International Conference on Information Security Theory and Practice, Dec. 2019, pp.78-90. DOI: https://doi.org/10.1007/978-3-030-20074-9_7.
Chang Y C, Lu C J. Oblivious polynomial evaluation and oblivious neural learning. In Proc. the 7th International Conference on the Theory and Application of Cryptology and Information Security Gold Coast, Dec. 2001, pp.369- 384. DOI: https://doi.org/10.1007/3-540-45682-1_22.
Cianciullo L, Ghodosi H. Unconditionally secure distributed oblivious polynomial evaluation. In Proc. the 21st International Conference on Information Security and Cryptology, Nov. 2018, pp.132-142. DOI: https://doi.org/10.1007/978-3-030-12146-4_9.
Ghosh S, Nielsen J B, Nilges T. Maliciously secure oblivious linear function evaluation with constant overhead. In Proc. the 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Dec. 2017, pp.629-659. DOI: https://doi.org/10.1007/978-3-319-70694-8_22.
Hazay C, Lindell Y. Efficient oblivious polynomial evaluation with simulation-based security. IACR Cryptology ePrint Archive, 2009, 2009: Article No. 459.
Zhu H, Bao F. Augmented oblivious polynomial evaluation protocol and its applications. In Proc. the 10th European Symposium on Research in Computer Security, Sept. 2005, pp.222-230. DOI: https://doi.org/10.1007/11555827_13.
Li H D, Yang X, Feng D G, Li B. Distributed oblivious function evaluation and its applications. Journal of Computer Science and Technology, 2004, 19(6): 942-947. DOI: https://doi.org/10.1007/BF02973458.
MathSciNet
Article
Google Scholar
Naor M, Pinkas B. Oblivious polynomial evaluation. SIAM Journal on Computing, 2006, 35(5): 1254-1281. DOI: https://doi.org/10.1137/S0097539704383633.
MathSciNet
Article
MATH
Google Scholar
Tonicelli R, Nascimento A C A, Dowsley R, Müller-Quade J, Imai H, Hanaoka G, Otsuka A. Information-theoretically secure oblivious polynomial evaluation in the commodity-based model. International Journal of Information Security, 2015, 14(1): 73-84. DOI: https://doi.org/10.1007/s10207-014-0247-8.
Article
Google Scholar
Döttling N, Ghosh S, Nielsen J B, Nilges T, Trifiletti R. TinyOLE: Efficient actively secure two-party computation from oblivious linear function evaluation. In Proc. the 2017 ACM SIGSAC Conference on Computer and Communications Security, October 30-November 3, 2017, pp.2263- 2276. DOI: https://doi.org/10.1145/3133956.3134024.
Özarar M, Özgit A. Secure multiparty overall mean computation via oblivious polynomial evaluation. In Proc. the 1st International Conference on Security of Information and Networks, May 2007, pp.84-95.
Chang Y C, Lu C J. Oblivious polynomial evaluation and oblivious neural learning. Theoretical Computer Science, 2005, 341(1/2/3): 39-54. DOI: https://doi.org/10.1016/j.tcs.2005.03.049.
MathSciNet
Article
MATH
Google Scholar
Ogata W, Kurosawa K. Oblivious keyword search. Journal of Complexity, 2004, 20(2/3): 356-371. DOI: https://doi.org/10.1016/j.jco.2003.08.023.
MathSciNet
Article
MATH
Google Scholar
Lindell P. Privacy preserving data mining. Journal of Cryptology, June 2002, 15(3): 177-206. DOI: https://doi.org/10.1007/s00145-001-0019-2.
Damgård I, Haagh H, Nielsen M, Orlandi C. Commodity-based 2PC for arithmetic circuits. In Proc. the 17th IMA International Conference on Cryptography and Coding, Dec. 2019, pp.154-177. DOI: https://doi.org/10.1007/978-3-030-35199-1_8.
Damgård I, Pastro V, Smart N, Zakarias S. Multiparty computation from somewhat homomorphic encryption. In Proc. the 32nd Annual Cryptology Conference, Aug. 2012, pp.643-662. DOI: https://doi.org/10.1007/978-3-642-32009-5_38.
Keller M, Orsini E, Scholl P. MASCOT: Faster malicious arithmetic secure computation with oblivious transfer. In Proc. the 2016 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2016, pp.830-842.
Lindell Y, Pinkas B, Smart N P, Yanai A. Effecient constant round multi-party computation combining BMR and SPDZ. In Proc. the 35th Annual Cryptology Conference, Aug. 2015, pp.319-338. DOI: https://doi.org/10.1007/978-3-662-48000-7_16.
Hazay C. Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. Journal of Cryptology, 2018, 31(2): 537-586. DOI: https://doi.org/10.1007/s00145-017-9263-y.
MathSciNet
Article
MATH
Google Scholar
Otsuka A, Imai H. Unconditionally secure electronic voting. In Towards Trustworthy Elections: New Directions in Electronic Voting, Chaum D, Jakobsson M, Rivest R, Ryan P, Benaloh J, Kutylowski M, Adida B (eds.), Springer, 2010, pp.107-123. DOI: https://doi.org/10.1007/978-3-642-12980-3_6.
Corniaux C L F, Ghodosi H. An information-theoretically secure threshold distributed oblivious transfer protocol. In Proc. the 15th International Conference on Information Security and Cryptology, Nov. 2012, pp.184-201. DOI: https://doi.org/10.1007/978-3-642-37682-5_14.
Crépeau C, Morozov K, Wolf S. Effecient unconditional oblivious transfer from almost any noisy channel. In Proc. the 4th International Conference on Security in Communication Networks, Sept. 2004, pp.47-59. DOI: https://doi.org/10.1007/978-3-540-30598-9_4.
Rivest R L. Unconditionally secure commitment and oblivious transfer schemes using private channels and a trusted initializer. http://people.csail.mit.edu/rivest/Rivest-commitment. pdf, Nov. 2021.
Bo Y, Wang Q, Cao Y. An effecient and unconditionally-secure oblivious polynomial evaluation protocol. In Proc. the 1st International Symposium on Data, Privacy, and E-Commerce, Nov. 2007, pp.181-184. DOI: https://doi.org/10.1109/ISDPE.2007.60.
Chor B, Kushilevitz E. A zero-one law for Boolean privacy. SIAM Journal on Discrete Mathematics, 1991, 4(1): 36-47. DOI: https://doi.org/10.1137/0404004.
MathSciNet
Article
MATH
Google Scholar
Cramer R, Damgård I B, Nielsen J B. Secure Multiparty Computation and Secret Sharing. Cambridge University Press, 2015. DOI: https://doi.org/10.1017/CBO9781107337756.
Corniaux C L F, Ghodosi H. A verifiable distributed oblivious transfer protocol. In Proc. the 16th Australasian Conference on Information Security and Privacy, July 2011, pp.444-450. DOI: https://doi.org/10.1007/978-3-642-22497-3_33.
Blundo C, D’Arco P, De Santis A, Stinson D. On unconditionally secure distributed oblivious transfer. Journal of Cryptology, 2007, 20(3): 323-373. DOI: https://doi.org/10.1007/s00145-007-0327-2.
MathSciNet
Article
MATH
Google Scholar
Shamir A. How to share a secret. Commun. ACM, 1979, 22(11): 612-613. DOI: https://doi.org/10.1145/359168.359176.
MathSciNet
Article
MATH
Google Scholar
Cheong K Y, Koshiba T, Nishiyama S. Strengthening the security of distributed oblivious transfer. In Proc. the 14th Australasian Conference on Information Security and Privacy, July 2009, pp.377-388. DOI: https://doi.org/10.1007/978-3-642-02620-1_26.
Naor M, Pinkas B. Distributed oblivious transfer. In Proc. the 6th International Conference on the Theory and Application of Cryptology and Information Security, Dec. 2000, pp.205-219. DOI: https://doi.org/10.1007/3-540-44448-3_16.
Hanaoka G, Imai H, Mueller-Quade J, Nascimento A C A, Otsuka A, Winter A. Information theoretically secure oblivious polynomial evaluation: Model, bounds, and constructions. In Proc. the 9th Australasian Conference on Information Security and Privacy, July 2004, pp.62-73. DOI: https://doi.org/10.1007/978-3-540-27800-9_6.
Beaver D. Commodity-based cryptography (extended abstract). In Proc. the 29th Annual ACM Symposium on Theory of Computing, May 1997, pp.446-455. DOI: https://doi.org/10.1145/258533.258637.