Skip to main content
Log in

A Binary Particle Swarm Optimization for the Minimum Weight Dominating Set Problem

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solution time of them grows very quickly as the size of the instance increases. In this paper, we propose a binary particle swarm optimization (FBPSO) for solving the MWDSP approximately. Based on the characteristic of MWDSP, this approach designs a new position updating rule to guide the search to a promising area. An iterated greedy tabu search is used to enhance the solution quality quickly. In addition, several stochastic strategies are employed to diversify the search and prevent premature convergence. These methods maintain a good balance between the exploration and the exploitation. Experimental studies on 106 groups of 1 060 instances show that FBPSO is able to identify near optimal solutions in a short running time. The average deviation between the solutions obtained by FBPSO and the best known solutions is 0.441%. Moreover, the average solution time of FBPSO is much less than that of other existing algorithms. In particular, with the increasing of instance size, the solution time of FBPSO grows much more slowly than that of other existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Company, 1979, pp.190-203.

  2. Mohanty J P, Mandal C, Reade C, Das A. Construction of minimum connected dominating set in wireless sensor networks using pseudo dominating set. Ad Hoc Networks, 2016, 42: 61-73.

    Article  Google Scholar 

  3. Han B, Jia W J. Clustering wireless ad hoc networks with weakly connected dominating set. Journal of Parallel and Distributed Computing, 2007, 67(6): 727-737.

    Article  MATH  Google Scholar 

  4. Katsaros D, Dimokas N, Tassiulas L. Social network analysis concepts in the design of wireless ad hoc network protocols. IEEE Network, 2010, 24(6): 23-29.

    Article  Google Scholar 

  5. Ma T H, Zhou J J, Tang M L Tian Y, Al-Dhelaan A, Al-Rodhaan M, Lee S. Social network and tag sources based augmenting collaborative recommender system. IEICE Trans. Information and Systems, 2015, E98-D(4): 902-910.

    Article  Google Scholar 

  6. Wu P, Wen J R, Liu H, Ma W Y. Query selection techniques for efficient crawling of structured Web sources. In Proc. the 22nd Int. Conf. Data Engineering, April 2006.

  7. Zheng Y H, Jeon B, Xu D H, Wu Q M J, Zhang H. Image segmentation by generalized hierarchical fuzzy C-means algorithm. Journal of Intelligent & Fuzzy Systems, 2015, 28(2): 961-973.

    Google Scholar 

  8. Li J, Li X L, Yang B, Sun X M. Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Information Forensics and Security, 2015, 10(3): 507-518.

    Article  Google Scholar 

  9. Kennedy J, Eberhart R C. Particle swarm optimization. In Proc. IEEE Int. Conf. Neural Networks, Nov.27-Dec.1, 1995, pp.1942-1948.

  10. Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm. In Proc. Int. Conf. Systems Man and Cybernetics, October 1997, pp.4104-4108.

  11. Jolai F, Taghipour M, Javadi B. A variable neighborhood binary particle swarm algorithm for cell layout problem. The International Journal of Advanced Manufacturing Technology, 2011, 55(1/2/3/4): 327-339.

  12. Luh G C, Lin C Y, Lin Y S. A binary particle swarm optimization for continuum structural topology optimization. Applied Soft Computing, 2011, 11(2): 2833-2844.

    Article  Google Scholar 

  13. Wang B, Peng Q K, Zhao J, Chen X. A binary particle swarm optimization algorithm inspired by multi-level organizational learning behavior. European Journal of Operational Research, 2012, 219(2): 224-233.

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang H S, Yan X F. Optimizing the echo state network with a binary particle swarm optimization algorithm. Knowledge-Based Systems, 2015, 86: 182-193.

    Article  Google Scholar 

  15. Zhao X C, Lin W Q, Hao J L, Zuo X Q, Yuan J H. Clustering and pattern search for enhancing particle swarm optimization with Euclidean spatial neighborhood search. Neurocomputing, 2016, 171: 966-981.

    Article  Google Scholar 

  16. Bansal J C, Deep K. A modified binary particle swarm optimization for Knapsack Problems. Applied Mathematics and Computation, 2012, 218(22): 11042-11061.

    Article  MathSciNet  MATH  Google Scholar 

  17. Qin J, Li X, Yin Y X. An algorithmic framework of discrete particle swarm optimization. Applied Soft Computing, 2012, 12(3): 1125-1130.

    Article  Google Scholar 

  18. Xu L, Qian F, Li Y P, Li Q M, Yang Y W, Xu J. Resource allocation based on quantum particle swarm optimization and RBF neural network for overlay cognitive OFDM system. Neurocomputing, 2016, 173: 1250-1256.

    Article  Google Scholar 

  19. Chen G L, Guo W Z, Chen Y Z. A PSO-based intelligent decision algorithm for VLSI floorplanning. Soft Computing, 2010, 14(12): 1329-1337.

    Article  Google Scholar 

  20. Coit D W, Smith A E, Tate D M. Adaptive penalty methods for genetic optimization of constrained combinatorial problems. INFORMS Journal on Computing, 1996, 8(2): 173-182.

    Article  MATH  Google Scholar 

  21. Handoko S D, Keong K C, Ong Y S. Using classification for constrained memetic algorithm: A new paradigm. In Proc. IEEE Int. Conf. Systems Man and Cybernetics, October 2008, pp.547-552.

  22. Kubiak M, Wesolek P. Accelerating local search in a memetic algorithm for the capacitated vehicle routing problem. In Evolutionary Computation in Combinatorial Optimization, Cotta C, Van Hemert J (eds.), Springer-Verlag, 2007, pp.96-107.

  23. Lin G, Zhu W X, Ali M M. An effective hybrid memetic algorithm for the minimum weight dominating set problem. IEEE Trans. Evolutionary Computation, 2016, 20(6): 892-907.

    Article  Google Scholar 

  24. Alon N, Moshkovitz D, Safra M. Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms, 2006, 2(2): 153-177.

    Article  MathSciNet  MATH  Google Scholar 

  25. Zou F, Wang Y X, Xu X H, Li X Y, Du H W, Wan P J, Wu W L. New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs. Theoretical Computer Science, 2011, 412(3): 198-208.

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu X, Wang W, Shan S, Wang Z, Wu WL. A PTAS for the minimum weighted dominating set problem with smooth weights on unit disk graphs. Journal of Combinatorial Optimization, 2012, 23(4): 443-450.

  27. Li J, Jin Y F. A PTAS for the weighted unit disk cover problem. In Automata Languages and Programming, Halldórsson M M, Iwama K, Kobayashi N, Speckmann B (eds.), Springer-Verlag, 2015, pp.898-909.

  28. Wang Z, Wang W, Kim J M, Thuraisingham B, Wu W L. PTAS for the minimum weighted dominating set in growth bounded graphs. Journal of Global Optimization, 2012, 54(3): 641-648.

    Article  MathSciNet  MATH  Google Scholar 

  29. Jovanovic R, Tuba M, Simian D. Ant colony optimization applied to minimum weight dominating set problem. In Proc. the 12th WSEAS Int. Conf. Automatic Control Modelling & Simulation, May 2010, pp.322-326.

  30. Potluri A, Singh A. Hybrid metaheuristic algorithms for minimum weight dominating set. Applied Soft Computing, 2013, 13(1): 76-88.

    Article  Google Scholar 

  31. Chaurasia S N, Singh A. A hybrid evolutionary algorithm with guided mutation for minimum weight dominating set. Applied Intelligence, 2015, 43(3): 512-529.

    Article  Google Scholar 

  32. Bouamama S, Blum C. A hybrid algorithmic model for the minimum weight dominating set problem. Simulation Modelling Practice and Theory, 2016, 64: 57-68.

    Article  Google Scholar 

  33. Hedar A R, Ismail R. Simulated annealing with stochastic local search for minimum dominating set problem. International Journal of Machine Learning and Cybernetics, 2012, 3(2): 97-109.

    Article  Google Scholar 

  34. García S, Molina D, Lozano M, Herrera F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’ 2005 Special Session on Real Parameter Optimization. Journal of Heuristics, 2009, 15(6): 617-644.

    Article  MATH  Google Scholar 

  35. Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 2011, 1(1): 3-18.

    Article  Google Scholar 

  36. Mladenovic N, Urosevic D, Pérez-Brito D, García-González C G. Variable neighbourhood search for bandwidth reduction. European Journal of Operational Research, 2010, 200(1): 14-27.

    Article  MathSciNet  MATH  Google Scholar 

  37. Guan J, Lin G. Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem. European Journal of Operational Research, 2016, 248(3): 899-909.

    Article  MathSciNet  MATH  Google Scholar 

  38. Kothari R, Ghosh D. An efficient genetic algorithm for single row facility layout. Optimization Letters, 2014, 8(2): 679-690.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, G., Guan, J. A Binary Particle Swarm Optimization for the Minimum Weight Dominating Set Problem. J. Comput. Sci. Technol. 33, 305–322 (2018). https://doi.org/10.1007/s11390-017-1781-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-017-1781-4

Keywords

Navigation