Journal of Computer Science and Technology

, Volume 33, Issue 2, pp 305–322 | Cite as

A Binary Particle Swarm Optimization for the Minimum Weight Dominating Set Problem

  • Geng LinEmail author
  • Jian Guan
Regular Paper


The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solution time of them grows very quickly as the size of the instance increases. In this paper, we propose a binary particle swarm optimization (FBPSO) for solving the MWDSP approximately. Based on the characteristic of MWDSP, this approach designs a new position updating rule to guide the search to a promising area. An iterated greedy tabu search is used to enhance the solution quality quickly. In addition, several stochastic strategies are employed to diversify the search and prevent premature convergence. These methods maintain a good balance between the exploration and the exploitation. Experimental studies on 106 groups of 1 060 instances show that FBPSO is able to identify near optimal solutions in a short running time. The average deviation between the solutions obtained by FBPSO and the best known solutions is 0.441%. Moreover, the average solution time of FBPSO is much less than that of other existing algorithms. In particular, with the increasing of instance size, the solution time of FBPSO grows much more slowly than that of other existing algorithms.


metaheuristics binary particle swarm optimization tabu search dominating set problem combinatorial optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11390_2017_1781_MOESM1_ESM.pdf (167 kb)
ESM 1 (PDF 167 kb)


  1. 1.
    Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Company, 1979, pp.190-203.Google Scholar
  2. 2.
    Mohanty J P, Mandal C, Reade C, Das A. Construction of minimum connected dominating set in wireless sensor networks using pseudo dominating set. Ad Hoc Networks, 2016, 42: 61-73.CrossRefGoogle Scholar
  3. 3.
    Han B, Jia W J. Clustering wireless ad hoc networks with weakly connected dominating set. Journal of Parallel and Distributed Computing, 2007, 67(6): 727-737.CrossRefzbMATHGoogle Scholar
  4. 4.
    Katsaros D, Dimokas N, Tassiulas L. Social network analysis concepts in the design of wireless ad hoc network protocols. IEEE Network, 2010, 24(6): 23-29.CrossRefGoogle Scholar
  5. 5.
    Ma T H, Zhou J J, Tang M L Tian Y, Al-Dhelaan A, Al-Rodhaan M, Lee S. Social network and tag sources based augmenting collaborative recommender system. IEICE Trans. Information and Systems, 2015, E98-D(4): 902-910.CrossRefGoogle Scholar
  6. 6.
    Wu P, Wen J R, Liu H, Ma W Y. Query selection techniques for efficient crawling of structured Web sources. In Proc. the 22nd Int. Conf. Data Engineering, April 2006.Google Scholar
  7. 7.
    Zheng Y H, Jeon B, Xu D H, Wu Q M J, Zhang H. Image segmentation by generalized hierarchical fuzzy C-means algorithm. Journal of Intelligent & Fuzzy Systems, 2015, 28(2): 961-973.Google Scholar
  8. 8.
    Li J, Li X L, Yang B, Sun X M. Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Information Forensics and Security, 2015, 10(3): 507-518.CrossRefGoogle Scholar
  9. 9.
    Kennedy J, Eberhart R C. Particle swarm optimization. In Proc. IEEE Int. Conf. Neural Networks, Nov.27-Dec.1, 1995, pp.1942-1948.Google Scholar
  10. 10.
    Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm. In Proc. Int. Conf. Systems Man and Cybernetics, October 1997, pp.4104-4108.Google Scholar
  11. 11.
    Jolai F, Taghipour M, Javadi B. A variable neighborhood binary particle swarm algorithm for cell layout problem. The International Journal of Advanced Manufacturing Technology, 2011, 55(1/2/3/4): 327-339.Google Scholar
  12. 12.
    Luh G C, Lin C Y, Lin Y S. A binary particle swarm optimization for continuum structural topology optimization. Applied Soft Computing, 2011, 11(2): 2833-2844.CrossRefGoogle Scholar
  13. 13.
    Wang B, Peng Q K, Zhao J, Chen X. A binary particle swarm optimization algorithm inspired by multi-level organizational learning behavior. European Journal of Operational Research, 2012, 219(2): 224-233.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang H S, Yan X F. Optimizing the echo state network with a binary particle swarm optimization algorithm. Knowledge-Based Systems, 2015, 86: 182-193.CrossRefGoogle Scholar
  15. 15.
    Zhao X C, Lin W Q, Hao J L, Zuo X Q, Yuan J H. Clustering and pattern search for enhancing particle swarm optimization with Euclidean spatial neighborhood search. Neurocomputing, 2016, 171: 966-981.CrossRefGoogle Scholar
  16. 16.
    Bansal J C, Deep K. A modified binary particle swarm optimization for Knapsack Problems. Applied Mathematics and Computation, 2012, 218(22): 11042-11061.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Qin J, Li X, Yin Y X. An algorithmic framework of discrete particle swarm optimization. Applied Soft Computing, 2012, 12(3): 1125-1130.CrossRefGoogle Scholar
  18. 18.
    Xu L, Qian F, Li Y P, Li Q M, Yang Y W, Xu J. Resource allocation based on quantum particle swarm optimization and RBF neural network for overlay cognitive OFDM system. Neurocomputing, 2016, 173: 1250-1256.CrossRefGoogle Scholar
  19. 19.
    Chen G L, Guo W Z, Chen Y Z. A PSO-based intelligent decision algorithm for VLSI floorplanning. Soft Computing, 2010, 14(12): 1329-1337.CrossRefGoogle Scholar
  20. 20.
    Coit D W, Smith A E, Tate D M. Adaptive penalty methods for genetic optimization of constrained combinatorial problems. INFORMS Journal on Computing, 1996, 8(2): 173-182.CrossRefzbMATHGoogle Scholar
  21. 21.
    Handoko S D, Keong K C, Ong Y S. Using classification for constrained memetic algorithm: A new paradigm. In Proc. IEEE Int. Conf. Systems Man and Cybernetics, October 2008, pp.547-552.Google Scholar
  22. 22.
    Kubiak M, Wesolek P. Accelerating local search in a memetic algorithm for the capacitated vehicle routing problem. In Evolutionary Computation in Combinatorial Optimization, Cotta C, Van Hemert J (eds.), Springer-Verlag, 2007, pp.96-107.Google Scholar
  23. 23.
    Lin G, Zhu W X, Ali M M. An effective hybrid memetic algorithm for the minimum weight dominating set problem. IEEE Trans. Evolutionary Computation, 2016, 20(6): 892-907.CrossRefGoogle Scholar
  24. 24.
    Alon N, Moshkovitz D, Safra M. Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms, 2006, 2(2): 153-177.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zou F, Wang Y X, Xu X H, Li X Y, Du H W, Wan P J, Wu W L. New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs. Theoretical Computer Science, 2011, 412(3): 198-208.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhu X, Wang W, Shan S, Wang Z, Wu WL. A PTAS for the minimum weighted dominating set problem with smooth weights on unit disk graphs. Journal of Combinatorial Optimization, 2012, 23(4): 443-450.Google Scholar
  27. 27.
    Li J, Jin Y F. A PTAS for the weighted unit disk cover problem. In Automata Languages and Programming, Halldórsson M M, Iwama K, Kobayashi N, Speckmann B (eds.), Springer-Verlag, 2015, pp.898-909.Google Scholar
  28. 28.
    Wang Z, Wang W, Kim J M, Thuraisingham B, Wu W L. PTAS for the minimum weighted dominating set in growth bounded graphs. Journal of Global Optimization, 2012, 54(3): 641-648.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Jovanovic R, Tuba M, Simian D. Ant colony optimization applied to minimum weight dominating set problem. In Proc. the 12th WSEAS Int. Conf. Automatic Control Modelling & Simulation, May 2010, pp.322-326.Google Scholar
  30. 30.
    Potluri A, Singh A. Hybrid metaheuristic algorithms for minimum weight dominating set. Applied Soft Computing, 2013, 13(1): 76-88.CrossRefGoogle Scholar
  31. 31.
    Chaurasia S N, Singh A. A hybrid evolutionary algorithm with guided mutation for minimum weight dominating set. Applied Intelligence, 2015, 43(3): 512-529.CrossRefGoogle Scholar
  32. 32.
    Bouamama S, Blum C. A hybrid algorithmic model for the minimum weight dominating set problem. Simulation Modelling Practice and Theory, 2016, 64: 57-68.CrossRefGoogle Scholar
  33. 33.
    Hedar A R, Ismail R. Simulated annealing with stochastic local search for minimum dominating set problem. International Journal of Machine Learning and Cybernetics, 2012, 3(2): 97-109.CrossRefGoogle Scholar
  34. 34.
    García S, Molina D, Lozano M, Herrera F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’ 2005 Special Session on Real Parameter Optimization. Journal of Heuristics, 2009, 15(6): 617-644.CrossRefzbMATHGoogle Scholar
  35. 35.
    Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 2011, 1(1): 3-18.CrossRefGoogle Scholar
  36. 36.
    Mladenovic N, Urosevic D, Pérez-Brito D, García-González C G. Variable neighbourhood search for bandwidth reduction. European Journal of Operational Research, 2010, 200(1): 14-27.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Guan J, Lin G. Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem. European Journal of Operational Research, 2016, 248(3): 899-909.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Kothari R, Ghosh D. An efficient genetic algorithm for single row facility layout. Optimization Letters, 2014, 8(2): 679-690.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsMinjiang UniversityFuzhouChina
  2. 2.Modern Educational Technology CenterMinjiang UniversityFuzhouChina

Personalised recommendations