Skip to main content
Log in

A Parallel Interval Computation Model for Global Optimization with Automatic Load Balancing

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we propose a decentralized parallel computation model for global optimization using interval analysis. The model is adaptive to any number of processors and the workload is automatically and evenly distributed among all processors by alternative message passing. The problems received by each processor are processed based on their local dominance properties, which avoids unnecessary interval evaluations. Further, the problem is treated as a whole at the beginning of computation so that no initial decomposition scheme is required. Numerical experiments indicate that the model works well and is stable with different number of parallel processors, distributes the load evenly among the processors, and provides an impressive speedup, especially when the problem is time-consuming to solve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansen P, Jaumard B. Lipschitz optimization. In Handbook of Global Optimization, Horst R, Pardalos P M (eds.), Dordrecht: Kluwer Academic Pulishers, 1995, pp.407–493.

  2. Özdamar L, Demirhan M B. Experiments with new stochastic global optimization search techniques. Computers and Operations Research, 2000, 27(9): 841–865.

    Article  MATH  Google Scholar 

  3. Hansen E. Global Optimization Using Interval Analysis. New York: Marcel Dekker, 1992.

    MATH  Google Scholar 

  4. Kearfott R B. Rigorous Global Search: Continuous Problems. Dordrecht: Kluwer Academic Publisher, 1996.

    MATH  Google Scholar 

  5. Pintér J. Branch and bound algorithms for solving global optimization problems with lipschitzian structure. Optimization, 1988, 19: 101–110.

    Article  MathSciNet  MATH  Google Scholar 

  6. Tang Z B. Adaptive partitioned random search to global optimization. IEEE Transactions on Automatic Control, 1994, 39(11): 2235–2244.

    Article  MATH  Google Scholar 

  7. Ratschek H, Rokne J. Interval methods. In Handbook of Global Optimization, Horst R, Pardalos P M (eds.), Kluwer Academic Publishers, 1995, pp.751–828.

  8. Skillicorn D B, Talia D. Models and languages for parallel computation. ACM Computing Surveys, 1998, 30(2): 123–169.

    Article  Google Scholar 

  9. Skelboe S. Computation of rational interval functions. BIT Numerical Mathematics, 1974, 14(1): 87–95.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen E, Sengupta S. Global constrained optimization using interval analysis. In Interval Mathematics, Nickel K (ed.), Berlin: Springer-Verlag, 1980, pp.25–47.

  11. Moore R E. Interval Analysis. Engelwood Cliffs: Prentice Hall, 1966.

    MATH  Google Scholar 

  12. Ratz D, Csendes T. On the selection of subdivision directions in interval branch-and-bound methods for global optimization. Journal of Global Optimization, 1995, 7(2): 183–207.

    Article  MathSciNet  MATH  Google Scholar 

  13. Casado L G, García I, Csendes T. A heuristic rejection criterion in interval global optimization algorithms. BIT Numerical Mathematics, 2001, 41(4): 683–692.

    Article  MathSciNet  MATH  Google Scholar 

  14. Casado L G, Martínez J A, García I. Experiments with a new selection criterion in a fast interval optimization algorithm. Journal of Global Optimization, 2001, 19(3): 247–264.

    Article  MathSciNet  MATH  Google Scholar 

  15. Csendes T. New subinterval selection criteria for interval global optimization. Journal of Global Optimization, 2001, 19(3): 307–327.

    Article  MathSciNet  MATH  Google Scholar 

  16. Pedamallu C S, Özdamar L, Csendes T, Vinkó T. Efficient interval partitioning for constrained global optimization. Journal of Global Optimization, 2008, 42(3): 369–384.

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun M. A fast memoryless interval-based algorithm for global optimization. Journal of Global Optimization, 2010, 47(2): 247–271.

    Article  MathSciNet  MATH  Google Scholar 

  18. Henriksen T, Madsen K. Use of a depth-first strategy in parallel global optimization. Technical Report 92-10, Institute of Numerical Analysis, Technical University of Denmark, Lyngby, 1992.

  19. Eriksson J, Lindstrom P. A parallel interval method implementation for global optimization using dynamic load balancing. Reliable Computing, 1995, 1(1): 77–91.

    Article  MATH  Google Scholar 

  20. Benyoub A, Daoudi E M. Parallelization of the continuous global optimization problem with inequality constraints by using interval arithmetic. In Proc. the 9th International Conference on High-Performance Computing and Networking, June 2001, pp.595–602.

  21. Ibraev S. A new parallel method for verified global optimization [PhD Thesis]. University of Wuppertal, Germany, 2001.

  22. Gau C Y, Stadtherr M A. Parallel interval-Newton using message passing: Dynamic load balancing strategies. In Proc. the 2001 ACM/IEEE Conference on Supercomputing, Denver, Colorado, Nov. 2001, Article No.23.

  23. Berner S. Parallel methods for verified global optimization practice and theory. Journal of Global Optimization, 1996, 9(1): 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  24. Message Passing Interface Forum. MPI: The message passing interface standard. 1994, http://www.mpi-forum.org, 2011.

  25. Wu Y, Kumar A. Interval subdivision strategies for constrained optimization. In Proc. the International Conference of Numerical Analysis and Applied Mathematics, Sept. 2005, pp.593–596.

  26. Ratschek H, Rokne J. New Computer Methods for Global Optimization. Ellis Horwood Limited, 1988.

  27. Floudas C A, Pardalos P M, Adjiman C S, Esposito W R, Gümüs Z H, Harding S T, Klepeis J L, Meyer C A, Schweiger C A. Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, 1999.

  28. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. Springer, 1996.

  29. Törn A, Žilinskas A. Global Optimization. Berlin: Springer-Verlag, 1989.

    Book  MATH  Google Scholar 

  30. Mäkelä M M, Neittaanmäki P. Nonsmooth Optimization. World Scientific, 1992.

  31. CUTEr. CUTEr: A constrained and unconstrained testing environment, revisited. http://cuter.rl.ac.uk/, 2011.

  32. Knüppel O. PROFILE/BIAS — A fast interval library. Computing, 1994, 53: 277–287.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Kumar, A. A Parallel Interval Computation Model for Global Optimization with Automatic Load Balancing. J. Comput. Sci. Technol. 27, 744–753 (2012). https://doi.org/10.1007/s11390-012-1260-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-012-1260-x

Keywords

Navigation