Journal of Computer Science and Technology

, Volume 25, Issue 1, pp 131–153 | Cite as

Network-Based Predictions and Simulations by Biological State Space Models: Search for Drug Mode of Action

  • Rui Yamaguchi
  • Seiya Imoto
  • Satoru Miyano


Since time-course microarray data are short but contain a large number of genes, most of statistical models should be extended so that they can handle such statistically irregular situations. We introduce biological state space models that are established as suitable computational models for constructing gene networks from microarray gene expression data. This chapter elucidates theory and methodology of our biological state space models together with some representative analyses including discovery of drug mode of action. Through the applications we show the whole strategy of biological state space model analysis involving experimental design of time-course data, model building and analysis of the estimated networks.


gene networks state space models time-course gene expression data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Spellman P T, Sherlock G, Zhang M Q, Iyer V R, Anders K, Eisen M B, Brown P O, Botstien D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the Yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 1998, 9(12): 3273–3297.Google Scholar
  2. [2]
    Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian network to analyze expression data. J. Comp. Biol., 2000, 7(3/4): 601–620.CrossRefGoogle Scholar
  3. [3]
    Imoto S, Goto T, Miyano S. Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. Pacific Symposium on Biocomputing, 2002, 7: 175–186.Google Scholar
  4. [4]
    Kim S, Imoto S, Miyano S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, 2004, 75(1–3): 57–65.CrossRefGoogle Scholar
  5. [5]
    Murphy K, Mian S. Modelling gene expression data using dynamic Bayesian networks. Technical Report, Computer Science Division, University of California, Berkeley, USA, 1999.Google Scholar
  6. [6]
    Basso K, Margolin A A, Stolovitzky G, Klein U, Dalla-Favera R, Califano A. Reverse engineering of regulatory networks in human B cells. Nat. Genet., 2005, 3(4): 382–390.CrossRefGoogle Scholar
  7. [7]
    Kitagawa G, Gersch W. Smoothness Priors Analysis of Time Series. New York: Springer-Verlag, 1996.zbMATHGoogle Scholar
  8. [8]
    West M, Harrison J. Bayesian Forecasting and Dynamic Models. Second Edition, New York: Springer-Verlag, 1997.zbMATHGoogle Scholar
  9. [9]
    Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-Jones S D, Print C, Miyano S. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics, 2008, 24(7): 932–942.CrossRefGoogle Scholar
  10. [10]
    Yoshida R, Imoto S, Higuchi T. Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching. In Proc. IEEE Computational Systems Bioinformatics Conference, Stanford, USA, Aug. 8–11, 2005, pp.289–298.Google Scholar
  11. [11]
    Kojima K, Yamaguchi R, Imoto S, Yamauchi M, Nagasaki M, Yoshida R Shimamura T, Ueno K, Higuchi T, Gotoh N, Miyano S. A state space representation of VAR models with sparse learning for dynamic gene networks. Genome Informatics, 2009, 22: 56–58.Google Scholar
  12. [12]
    Shumway R H, Stoffer D S. An approach to time series smoothing and forecasting using the EM algorithm. J. Time Series Analysis, 1982, 3(4): 253–264.zbMATHCrossRefGoogle Scholar
  13. [13]
    Shumway R H. Dynamic mixed models for irregularly observed time series. Resenhas-Reviews of the Institute of Mathematics and Statistics, University of Sao Paulo, Brazil: USP Press, 2000, 4(4): 433–456.Google Scholar
  14. [14]
    Kalman R E. A new approach to linear filtering and prediction problems. Trans. Amer. Soc. Mech. Eng., J. Basic Engineering, 1960, 82: 35–45.Google Scholar
  15. [15]
    Yamaguchi R, Yoshida R, Imoto S, Higuchi T, Miyano S. Finding module-based gene networks with state-space models — Mining high-dimensional and short time-course gene expression data. IEEE Signal Processing Magazine, 2007, 24(1): 37–46.CrossRefGoogle Scholar
  16. [16]
    Shimamura T, Yamaguchi R, Imoto S, Miyano S. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data. Genome Informatics, 2007, 19: 142–153.CrossRefGoogle Scholar
  17. [17]
    Efron B, Hastie T, Johnstone J, Tibshirani R. Least angle regression. Annals of Statistics, 2004, 32(2): 407–499.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Li Z, Shaw S M, Yedwabnick M J, Chan C. Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics, 2006, 22(6): 747–754.CrossRefGoogle Scholar
  19. [19]
    Wu F X, Zhang A J, Kusalik A J. Modeling gene expression from microarray expression data with state-space equations. Pacific Symposium on Biocomputing, 2004, 9: 581–592.Google Scholar
  20. [20]
    Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild D L, Falciani F. Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics, 2004, 20(9): 1361–1372.CrossRefGoogle Scholar
  21. [21]
    Beal M J, Falciani F, Ghahramani Z, Rangel C, Wild D L. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 2005, 21(3): 349–356.CrossRefGoogle Scholar
  22. [22]
    Boyle E I, Weng S, Gollub J, Jin H, Botstein D, Cherry J M, Sherlock G. GO::TermFinder—Open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 2004, 20(18): 3710–3715.CrossRefGoogle Scholar
  23. [23]
    Affara M, Dunmore B, Savoie C, Imoto S, Tamada Y, Araki H, Charnock-Jones D S, Miyano S, Print C. Understanding endothelial cell apoptosis: What can the transcriptome glycome and proteome reveal? Philosophical Transactions of Royal Society, 2007, 62(1484): 1469–1487.CrossRefGoogle Scholar
  24. [24]
    Johnson N A, Sengupta S, Saidi S A, Lessan K, Charnock-Jones S D, Scott L, Stephens R, Freeman T C, Tom B D, Harris M, Denyer G, Sundaram M, Sasisekharan R, Smith S K, Print C G. Endothelial cells preparing to die by apoptosis initiate a program of transcriptome and glycome regulation. FASEB J., 2003, 18(1): 188–190.Google Scholar
  25. [25]
    Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 2000, 6(4): 389–395.CrossRefGoogle Scholar
  26. [26]
    Gerver H P, Hillan K J, Ryan A M, Kowalski J, Keller G A, Rangell L, Wright B D, Radtke F, Aguet M, Ferrara N. VEGF is required for growth and survival in neonatal mice. Development, 1999, 126(6): 1149–1159.Google Scholar
  27. [27]
    Silverman B W. Density Estimation for Statistics and Data Analysis. London: Chapman & Hall, 1986.zbMATHGoogle Scholar
  28. [28]
    Aggarwal B B. Tumor necrosis factors receptor associated signaling molecules and their role in activation of apoptosis, JNK and NF-κB. Ann. Rheum. Dis., 2000, 59(Suppl. I): i6–i16.CrossRefGoogle Scholar
  29. [29]
    Keifer J A, Guttridge D C, Ashburner B P, Baldwin A S Jr. Inhibition of NF-κB activity by thalidomide through suppression of IκB kinase activity. J. Biol. Chem., 2001, 276(25): 22382–22387.CrossRefGoogle Scholar
  30. [30]
    Schwenzer R. The human tumor necrosis factor (TNF) receptor-associated factor 1 gene (TRAF1) is up-regulated by cytokines of the TNF ligand family and modulates TNF-induced activation of NF-κB and c-Jun N-terminal kinase. J. Biol. Chem., 1999, 274(27): 19368–19374.CrossRefGoogle Scholar
  31. [31]
    Han Y, Weinman S, Boldogh I, Walker R K, Brasier A R. Tumor necrosis factor-α-inducible IκBα proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-κB activation. J. Biol. Chem., 1999, 274(2): 787–794.CrossRefGoogle Scholar
  32. [32]
    Mukherji M, Bell R, Supekova L, Wang Y, Orth A P, Batalov S, Miraglia L, Huesken D, Lange J, Martin C, Sahasrabudhe S, Reinhardt M, Natt F, Hall J, Mickanin C, Labow M, Chanda S K, Cho C Y, Schultz P G. Genome-wide functional analysis of human cell-cycle regulators. Proc. Natl. Acad. Sci. USA, 2006, 103(40): 14819–14824.CrossRefGoogle Scholar
  33. [33]
    Yamaguchi R, Imoto S, Yamauchi M, Nagasaki M, Yoshida R, Shimamura T, Hatanaka Y, Ueno K, Higuchi T, Gotoh N, Miyano S. Predicting differences in gene regulatory systems by state space models. Genome Informatics, 2008, 21: 101–113.CrossRefGoogle Scholar
  34. [34]
    Gupta P K, Yoshida R, Imoto S, Yamaguchi R, Miyano S. Statistical absolute evaluation of gene ontology terms with gene expression data. In Proc. the 3rd Int. Symp. Bioinformatics Research and Applications, Atlanta, USA, May 7–10, 2007, LNCS 4463, Springer, Berlin/Heidelberg, pp.146–157.Google Scholar
  35. [35]
    Yamaguchi R, Yamamoto M, Imoto S, Nagasaki M, Yoshida R, Tsuiji K, Ishige A, Asou H, Watanabe K, Miyano S. Identification of activated transcription factors from microarray gene expression data of kampo medicine-treated mice. Genome Informatics, 2007, 18: 119–129.CrossRefGoogle Scholar
  36. [36]
    Tamada Y, Imoto S, Araki H, Nagasaki M, Print C, Charnock-Jones D S, Miyano S. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers. IEEE/ACM Trans. Computational Biology and Bioinformatics. (in Press)Google Scholar
  37. [37]
    Nagasaki M, Yamaguchi R, Yoshida R, Imoto S, Doi A, Tamada Y, Matsuno H, Miyan S, Higuchi T. Genomic data assimilation for estimating hybrid functional petri net from time-course gene expression data. Genome Informatics, 2006, 17(1): 46–61.Google Scholar
  38. [38]
    Cell Illustrator., Oct. 1, 2009.
  39. [39]
    Nagasaki M, Doi A, Matsuno H, Miyano S. Genomic object net: I. a platform for modeling and simulating biopathways. Applied Bioinformatics, 2003, 2(3): 181–184.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Human Genome Center, Institute of Medical ScienceUniversity of TokyoTokyoJapan

Personalised recommendations