Skip to main content
Log in

Network-Based Predictions and Simulations by Biological State Space Models: Search for Drug Mode of Action

Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Since time-course microarray data are short but contain a large number of genes, most of statistical models should be extended so that they can handle such statistically irregular situations. We introduce biological state space models that are established as suitable computational models for constructing gene networks from microarray gene expression data. This chapter elucidates theory and methodology of our biological state space models together with some representative analyses including discovery of drug mode of action. Through the applications we show the whole strategy of biological state space model analysis involving experimental design of time-course data, model building and analysis of the estimated networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Spellman P T, Sherlock G, Zhang M Q, Iyer V R, Anders K, Eisen M B, Brown P O, Botstien D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the Yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 1998, 9(12): 3273–3297.

    Google Scholar 

  2. Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian network to analyze expression data. J. Comp. Biol., 2000, 7(3/4): 601–620.

    Article  Google Scholar 

  3. Imoto S, Goto T, Miyano S. Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. Pacific Symposium on Biocomputing, 2002, 7: 175–186.

    Google Scholar 

  4. Kim S, Imoto S, Miyano S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, 2004, 75(1–3): 57–65.

    Article  Google Scholar 

  5. Murphy K, Mian S. Modelling gene expression data using dynamic Bayesian networks. Technical Report, Computer Science Division, University of California, Berkeley, USA, 1999.

  6. Basso K, Margolin A A, Stolovitzky G, Klein U, Dalla-Favera R, Califano A. Reverse engineering of regulatory networks in human B cells. Nat. Genet., 2005, 3(4): 382–390.

    Article  Google Scholar 

  7. Kitagawa G, Gersch W. Smoothness Priors Analysis of Time Series. New York: Springer-Verlag, 1996.

    MATH  Google Scholar 

  8. West M, Harrison J. Bayesian Forecasting and Dynamic Models. Second Edition, New York: Springer-Verlag, 1997.

    MATH  Google Scholar 

  9. Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-Jones S D, Print C, Miyano S. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics, 2008, 24(7): 932–942.

    Article  Google Scholar 

  10. Yoshida R, Imoto S, Higuchi T. Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching. In Proc. IEEE Computational Systems Bioinformatics Conference, Stanford, USA, Aug. 8–11, 2005, pp.289–298.

  11. Kojima K, Yamaguchi R, Imoto S, Yamauchi M, Nagasaki M, Yoshida R Shimamura T, Ueno K, Higuchi T, Gotoh N, Miyano S. A state space representation of VAR models with sparse learning for dynamic gene networks. Genome Informatics, 2009, 22: 56–58.

    Google Scholar 

  12. Shumway R H, Stoffer D S. An approach to time series smoothing and forecasting using the EM algorithm. J. Time Series Analysis, 1982, 3(4): 253–264.

    Article  MATH  Google Scholar 

  13. Shumway R H. Dynamic mixed models for irregularly observed time series. Resenhas-Reviews of the Institute of Mathematics and Statistics, University of Sao Paulo, Brazil: USP Press, 2000, 4(4): 433–456.

    Google Scholar 

  14. Kalman R E. A new approach to linear filtering and prediction problems. Trans. Amer. Soc. Mech. Eng., J. Basic Engineering, 1960, 82: 35–45.

    Google Scholar 

  15. Yamaguchi R, Yoshida R, Imoto S, Higuchi T, Miyano S. Finding module-based gene networks with state-space models — Mining high-dimensional and short time-course gene expression data. IEEE Signal Processing Magazine, 2007, 24(1): 37–46.

    Article  Google Scholar 

  16. Shimamura T, Yamaguchi R, Imoto S, Miyano S. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data. Genome Informatics, 2007, 19: 142–153.

    Article  Google Scholar 

  17. Efron B, Hastie T, Johnstone J, Tibshirani R. Least angle regression. Annals of Statistics, 2004, 32(2): 407–499.

    Article  MATH  MathSciNet  Google Scholar 

  18. Li Z, Shaw S M, Yedwabnick M J, Chan C. Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics, 2006, 22(6): 747–754.

    Article  Google Scholar 

  19. Wu F X, Zhang A J, Kusalik A J. Modeling gene expression from microarray expression data with state-space equations. Pacific Symposium on Biocomputing, 2004, 9: 581–592.

    Google Scholar 

  20. Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild D L, Falciani F. Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics, 2004, 20(9): 1361–1372.

    Article  Google Scholar 

  21. Beal M J, Falciani F, Ghahramani Z, Rangel C, Wild D L. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 2005, 21(3): 349–356.

    Article  Google Scholar 

  22. Boyle E I, Weng S, Gollub J, Jin H, Botstein D, Cherry J M, Sherlock G. GO::TermFinder—Open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 2004, 20(18): 3710–3715.

    Article  Google Scholar 

  23. Affara M, Dunmore B, Savoie C, Imoto S, Tamada Y, Araki H, Charnock-Jones D S, Miyano S, Print C. Understanding endothelial cell apoptosis: What can the transcriptome glycome and proteome reveal? Philosophical Transactions of Royal Society, 2007, 62(1484): 1469–1487.

    Article  Google Scholar 

  24. Johnson N A, Sengupta S, Saidi S A, Lessan K, Charnock-Jones S D, Scott L, Stephens R, Freeman T C, Tom B D, Harris M, Denyer G, Sundaram M, Sasisekharan R, Smith S K, Print C G. Endothelial cells preparing to die by apoptosis initiate a program of transcriptome and glycome regulation. FASEB J., 2003, 18(1): 188–190.

    Google Scholar 

  25. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 2000, 6(4): 389–395.

    Article  Google Scholar 

  26. Gerver H P, Hillan K J, Ryan A M, Kowalski J, Keller G A, Rangell L, Wright B D, Radtke F, Aguet M, Ferrara N. VEGF is required for growth and survival in neonatal mice. Development, 1999, 126(6): 1149–1159.

    Google Scholar 

  27. Silverman B W. Density Estimation for Statistics and Data Analysis. London: Chapman & Hall, 1986.

    MATH  Google Scholar 

  28. Aggarwal B B. Tumor necrosis factors receptor associated signaling molecules and their role in activation of apoptosis, JNK and NF-κB. Ann. Rheum. Dis., 2000, 59(Suppl. I): i6–i16.

    Article  Google Scholar 

  29. Keifer J A, Guttridge D C, Ashburner B P, Baldwin A S Jr. Inhibition of NF-κB activity by thalidomide through suppression of IκB kinase activity. J. Biol. Chem., 2001, 276(25): 22382–22387.

    Article  Google Scholar 

  30. Schwenzer R. The human tumor necrosis factor (TNF) receptor-associated factor 1 gene (TRAF1) is up-regulated by cytokines of the TNF ligand family and modulates TNF-induced activation of NF-κB and c-Jun N-terminal kinase. J. Biol. Chem., 1999, 274(27): 19368–19374.

    Article  Google Scholar 

  31. Han Y, Weinman S, Boldogh I, Walker R K, Brasier A R. Tumor necrosis factor-α-inducible IκBα proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-κB activation. J. Biol. Chem., 1999, 274(2): 787–794.

    Article  Google Scholar 

  32. Mukherji M, Bell R, Supekova L, Wang Y, Orth A P, Batalov S, Miraglia L, Huesken D, Lange J, Martin C, Sahasrabudhe S, Reinhardt M, Natt F, Hall J, Mickanin C, Labow M, Chanda S K, Cho C Y, Schultz P G. Genome-wide functional analysis of human cell-cycle regulators. Proc. Natl. Acad. Sci. USA, 2006, 103(40): 14819–14824.

    Article  Google Scholar 

  33. Yamaguchi R, Imoto S, Yamauchi M, Nagasaki M, Yoshida R, Shimamura T, Hatanaka Y, Ueno K, Higuchi T, Gotoh N, Miyano S. Predicting differences in gene regulatory systems by state space models. Genome Informatics, 2008, 21: 101–113.

    Article  Google Scholar 

  34. Gupta P K, Yoshida R, Imoto S, Yamaguchi R, Miyano S. Statistical absolute evaluation of gene ontology terms with gene expression data. In Proc. the 3rd Int. Symp. Bioinformatics Research and Applications, Atlanta, USA, May 7–10, 2007, LNCS 4463, Springer, Berlin/Heidelberg, pp.146–157.

  35. Yamaguchi R, Yamamoto M, Imoto S, Nagasaki M, Yoshida R, Tsuiji K, Ishige A, Asou H, Watanabe K, Miyano S. Identification of activated transcription factors from microarray gene expression data of kampo medicine-treated mice. Genome Informatics, 2007, 18: 119–129.

    Article  Google Scholar 

  36. Tamada Y, Imoto S, Araki H, Nagasaki M, Print C, Charnock-Jones D S, Miyano S. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers. IEEE/ACM Trans. Computational Biology and Bioinformatics. (in Press)

  37. Nagasaki M, Yamaguchi R, Yoshida R, Imoto S, Doi A, Tamada Y, Matsuno H, Miyan S, Higuchi T. Genomic data assimilation for estimating hybrid functional petri net from time-course gene expression data. Genome Informatics, 2006, 17(1): 46–61.

    Google Scholar 

  38. Cell Illustrator. http://www.cellillustrator.com/, Oct. 1, 2009.

  39. Nagasaki M, Doi A, Matsuno H, Miyano S. Genomic object net: I. a platform for modeling and simulating biopathways. Applied Bioinformatics, 2003, 2(3): 181–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, R., Imoto, S. & Miyano, S. Network-Based Predictions and Simulations by Biological State Space Models: Search for Drug Mode of Action. J. Comput. Sci. Technol. 25, 131–153 (2010). https://doi.org/10.1007/s11390-010-9311-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-010-9311-7

Keywords

Navigation