Prädiktive Biomarker in der immunonkologischen Therapie gastrointestinaler Tumoren: derzeitiger Standard und zukünftige Perspektiven

Predictive biomarkers in immuno-oncological therapies of gastrointestinal tumors: current standard and future perspectives

Zusammenfassung

Onkologische Therapieverfahren, die Immuncheckpointinhibitoren beinhalten, werden mit Erfolg bei vielen Tumorentitäten eingesetzt. Da jedoch nur ein Teil der Patienten profitiert und unerwünschte Nebenwirkungen auftreten können, ist es wichtig, verlässliche Biomarker zur Prädiktion des Therapieerfolgs zu identifizieren. In dieser Übersichtsarbeit werden bereits etablierte sowie in der Entwicklung befindliche Biomarker beschrieben und zugrunde liegende Konzepte erläutert. Aus tumorbiologischer Sicht werden zukünftig komplexe (kompositorische) Biomarker, die das Zusammenspiel des molekularen Tumorprofils, des Tumormikromilieus und Eigenschaften des Wirts abbilden, eine größere Rolle spielen, wobei der Zusatznutzen in prospektiven klinischen Studien belegt werden muss.

Abstract

Oncological therapies involving immune checkpoint inhibitors are successfully used in many cancer types. However, since only a subset of patients benefit and unwanted side effects may occur, it is important to identify reliable predictive biomarkers. In this review, established biomarkers as well as biomarkers in development are described and underlying concepts are explained. From a biological point of view, complex (composite) biomarkers that map the interaction of the molecular tumor profile with the tumor microenvironment and properties of the host will play a greater role in the future. The additional benefit must be proven in prospective clinical studies.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. 1.

    Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced. Cancer 366:2455–2465. https://doi.org/10.1056/NEJMoa1200694

    CAS  Article  Google Scholar 

  2. 2.

    Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461. https://doi.org/10.1016/j.ccell.2015.03.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kloor M, von Knebel Doeberitz M (2016) The immune biology of microsatellite-unstable cancer. Trends Cancer 2:121–133. https://doi.org/10.1016/j.trecan.2016.02.004

    Article  PubMed  Google Scholar 

  4. 4.

    Ballhausen A, Przybilla MJ, Jendrusch M et al (2020) The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution. Nat Commun 11:4740. https://doi.org/10.1038/s41467-020-18514-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Le DT, Uram JN, Wang H et al (2015) PD‑1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520. https://doi.org/10.1056/NEJMoa1500596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD‑1 blockade. Science 357:409–413

    CAS  Article  Google Scholar 

  7. 7.

    Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    CAS  PubMed  Google Scholar 

  8. 8.

    Dietmaier W, Wallinger S, Bocker T et al (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57:4749–4756

    CAS  PubMed  Google Scholar 

  9. 9.

    Kishore C, Bhadra P (2021) Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur J Pharmacol 893:173819. https://doi.org/10.1016/j.ejphar.2020.173819

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Administration USFaD (2017) FDA approves first cancer treatment for any solid tumor with a specific genetic feature

    Google Scholar 

  11. 11.

    Marcus L, Lemery SJ, Keegan P et al (2019) FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res 25:3753–3758

    CAS  Article  Google Scholar 

  12. 12.

    André T, Shiu KK, Kim TW et al (2020) Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 383:2207–2218. https://doi.org/10.1056/NEJMoa2017699

    Article  PubMed  Google Scholar 

  13. 13.

    Palles C, Cazier JB, Howarth KM et al (2013) Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 45:136–144. https://doi.org/10.1038/ng.2503

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Campbell BB, Light N, Fabrizio D et al (2017) Comprehensive analysis of hypermutation in human cancer. Cell 171(010):1042–1056.e10. https://doi.org/10.1016/j.cell.2017.09.048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Shlien A, Campbell BB, de Borja R et al (2015) Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat Genet 47:257–262. https://doi.org/10.1038/ng.3202

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Zhu L, Meric-Bernstam F, Holla V et al (2020) Clinical outcome for gastrointestinal cancers with polymerase epsilon mutations treated with immunotherapy. J Clin Oncol 38:828–828. https://doi.org/10.1200/JCO.2020.38.4_suppl.828

    Article  Google Scholar 

  17. 17.

    Kryklyva V, Ter Linden E, Kroeze LI et al (2020) Medullary pancreatic carcinoma due to somatic POLE mutation: a distinctive pancreatic carcinoma with marked long-term survival. Pancreas 49:999

    Article  Google Scholar 

  18. 18.

    Wang F, Zhao Q, Wang Y‑N et al (2019) Evaluation of POLE and POLD1 mutations as Biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol 5:1504–1506. https://doi.org/10.1001/jamaoncol.2019.2963

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Silberman R, Steiner DF, Lo AA et al (2019) Complete and prolonged response to immune checkpoint blockade in POLE-mutated colorectal cancer. JCO Precis Oncol. https://doi.org/10.1200/po.18.00214

    Article  Google Scholar 

  20. 20.

    Garmezy B, Gheeya JS, Thein KZ et al (2020) Correlation of pathogenic POLE mutations with clinical benefit to immune checkpoint inhibitor therapy. J Clin Oncol 38:3008

    Article  Google Scholar 

  21. 21.

    Seeber A, Puccini A, Xiu J et al (2019) Association of BRCA-mutant pancreatic cancer with high tumor mutational burden (TMB) and higher PD-L1 expression. J Clin Oncol 37(15_suppl):4133. https://doi.org/10.1200/JCO.2019.37.15_suppl.4133

    Article  Google Scholar 

  22. 22.

    Chan TA, Yarchoan M, Jaffee E et al (2019) Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 30:44–56. https://doi.org/10.1093/annonc/mdy495

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Sha D, Jin Z, Budczies J et al (2020) Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov 10:1808–1825. https://doi.org/10.1158/2159-8290.Cd-20-0522

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Venkatesan S, Rosenthal R, Kanu N et al (2018) Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann Oncol 29:563–572. https://doi.org/10.1093/annonc/mdy003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Klempner SJ, Fabrizio D, Bane S et al (2020) Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence. Oncologist 25:e147–e159. https://doi.org/10.1634/theoncologist.2019-0244

    Article  PubMed  Google Scholar 

  26. 26.

    Hellmann MD, Callahan MK, Awad MM et al (2018) Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with Ipilimumab in small-cell lung cancer. Cancer Cell 33:853–861.e854. https://doi.org/10.1016/j.ccell.2018.04.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Rosenberg JE, Hoffman-Censits J, Powles T et al (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387:1909–1920. https://doi.org/10.1016/s0140-6736(16)00561-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Yarchoan M, Hopkins A, Jaffee EM (2017) Tumor mutational burden and response rate to PD‑1 inhibition. N Engl J Med 377:2500–2501. https://doi.org/10.1056/NEJMc1713444

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Litchfield K, Reading JL, Puttick C et al (2021) Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184(14):596–614.e14. https://doi.org/10.1016/j.cell.2021.01.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Fuchs CS, Özgüroğlu M, Bang Y‑J et al (2020) The association of molecular biomarkers with efficacy of pembrolizumab versus paclitaxel in patients with gastric cancer (GC) from Keynote-061. J Clin Oncol 38:4512–4512. https://doi.org/10.1200/JCO.2020.38.15_suppl.4512.

    Article  Google Scholar 

  31. 31.

    Kawazoe A, Yamamoto N, Kotani D et al (2020) TAS-116, an oral HSP90 inhibitor, in combination with nivolumab in patients with colorectal cancer and other solid tumors: An open-label, dose-finding, and expansion phase Ib trial (EPOC1704). J Clin Oncol 38:4044–4044. https://doi.org/10.1200/JCO.2020.38.15_suppl.4044.

    Article  Google Scholar 

  32. 32.

    Samstein RM, Lee CH, Shoushtari AN et al (2019) Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 51:202–206. https://doi.org/10.1038/s41588-018-0312-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Schrock A, Ouyang C, Sandhu J et al (2019) Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol 30:1096–1103

    CAS  Article  Google Scholar 

  34. 34.

    Zhang W, Shi J, Wang Y et al (2020) Next-generation sequencing-guided molecular-targeted therapy and immunotherapy for biliary tract cancers, S 1–14

    Google Scholar 

  35. 35.

    Marabelle A, Fakih M, Lopez J et al (2020) Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 Keynote-158 study. Lancet Oncol 21:1353–1365. https://doi.org/10.1016/S1470-2045(20)30445-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Passaro A, Stenzinger A, Peters S (2020) Tumor mutational burden as a pan-cancer biomarker for immunotherapy: the limits and potential for convergence. Cancer Cell 38:624–625. https://doi.org/10.1016/j.ccell.2020.10.019

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Merino DM, McShane LM, Fabrizio D et al (2020) Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project. J Immunother Cancer. https://doi.org/10.1136/jitc-2019-000147

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Stenzinger A, Endris V, Budczies J et al (2020) Harmonization and standardization of panel-based tumor mutational burden measurement: real-world results and recommendations of the quality in pathology study. J Thorac Oncol 15:1177–1189. https://doi.org/10.1016/j.jtho.2020.01.023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Lin C, Franceschi S, Clifford GM (2018) Human papillomavirus types from infection to cancer in the anus, according to sex and HIV status: a systematic review and meta-analysis. Lancet Infect Dis 18:198–206. https://doi.org/10.1016/s1473-3099(17)30653-9

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Morris VK, Salem ME, Nimeiri H et al (2017) Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study. Lancet Oncol 18:446–453. https://doi.org/10.1016/s1470-2045(17)30104-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ott PA, Piha-Paul SA, Munster P et al (2017) Safety and antitumor activity of the anti-PD‑1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann Oncol 28:1036–1041. https://doi.org/10.1093/annonc/mdx029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Bian JJ, Almhanna K (2019) Anal cancer and immunotherapy-are we there yet? Transl Gastroenterol Hepatol 4:57. https://doi.org/10.21037/tgh.2019.08.02

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Moehler M, Al-Batran S‑E, Andus T et al. S3-Leitlinie Magenkarzinom-Diagnostik und Therapie der Adenokarzinome des Magens und des ösophagogastralen Übergangs-Langversion 2.0-August 2019. AWMF-Registernummer: 032/009OL. 2019; 57: 1517–1632

  44. 44.

    Nature CGARNJ (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202

    Article  Google Scholar 

  45. 45.

    Kang BW, Baek DW, Kang H et al (2019) Novel therapeutic approaches for Epstein-Barr virus associated gastric cancer. Anticancer Res 39:4003–4010. https://doi.org/10.21873/anticanres.13555

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Ma C, Patel K, Singhi AD et al (2016) Programmed death-Ligand 1 expression is common in gastric cancer associated with Epstein-Barr virus or microsatellite instability. Am J Surg Pathol 40:1496–1506. https://doi.org/10.1097/pas.0000000000000698

    Article  PubMed  Google Scholar 

  47. 47.

    Kawazoe A, Kuwata T, Kuboki Y et al (2017) Clinicopathological features of programmed death ligand 1 expression with tumor-infiltrating lymphocyte, mismatch repair, and Epstein-Barr virus status in a large cohort of gastric cancer patients. Gastric Cancer 20:407–415. https://doi.org/10.1007/s10120-016-0631-3

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Nakayama A, Abe H, Kunita A et al (2019) Viral loads correlate with upregulation of PD-L1 and worse patient prognosis in Epstein-Barr Virus-associated gastric carcinoma. PLoS ONE 14:e211358. https://doi.org/10.1371/journal.pone.0211358

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kim ST, Cristescu R, Bass AJ et al (2018) Comprehensive molecular characterization of clinical responses to PD‑1 inhibition in metastatic gastric cancer. Nat Med 24:1449–1458. https://doi.org/10.1038/s41591-018-0101-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sade-Feldman M, Yizhak K, Bjorgaard SL et al (2018) Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175:998–1013.e20. https://doi.org/10.1016/j.cell.2018.10.038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kalbasi A, Ribas A (2020) Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 20:25–39. https://doi.org/10.1038/s41577-019-0218-4

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Budczies J, Bockmayr M, Klauschen F et al (2017) Mutation patterns in genes encoding interferon signaling and antigen presentation: a pan-cancer survey with implications for the use of immune checkpoint inhibitors. Genes Chromosomes Cancer 56:651–659. https://doi.org/10.1002/gcc.22468

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Kloor M, Michel S, Buckowitz B et al (2007) Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer 121:454–458. https://doi.org/10.1002/ijc.22691

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Ozcan M, Janikovits J, von Knebel Doeberitz M et al (2018) Complex pattern of immune evasion in MSI colorectal cancer. OncoImmunology 7:e1445453. https://doi.org/10.1080/2162402X.2018.1445453

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Zinkernagel RM, Doherty PC (1997) The discovery of MHC restriction. Immunol Today 18:14–17. https://doi.org/10.1016/s0167-5699(97)80008-4

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Zinkernagel RM, Doherty PC (1979) MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T‑cell restriction-specificity, function, and responsiveness. Adv Immunol 27:51–177. https://doi.org/10.1016/s0065-2776(08)60262-x

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Chowell D, Krishna C, Pierini F et al (2019) Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat Med 25:1715–1720. https://doi.org/10.1038/s41591-019-0639-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    McGranahan N, Rosenthal R, Hiley CT et al (2017) Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171(211):1259–1271.e11. https://doi.org/10.1016/j.cell.2017.10.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Zaretsky JM, Garcia-Diaz A, Shin DS et al (2016) Mutations associated with acquired resistance to PD‑1 blockade in melanoma. N Engl J Med 375:819–829

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Middha S, Yaeger R, Shia J et al (2019) Majority of B2M-mutant and -deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high. JCO Precis Oncol. https://doi.org/10.1200/po.18.00321

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Germano G, Lu S, Rospo G et al (2021) CD4 T cell dependent rejection of beta 2 microglobulin null mismatch repair deficient tumors. Cancer Discov. https://doi.org/10.1158/2159-8290.Cd-20-0987

    Article  PubMed  Google Scholar 

  62. 62.

    Qi Q, Liu Y, Cheng Y et al (2014) Diversity and clonal selection in the human T‑cell repertoire. Proc Natl Acad Sci 111:13139–13144. https://doi.org/10.1073/pnas.1409155111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Rosati E, Dowds CM, Liaskou E et al (2017) Overview of methodologies for T‑cell receptor repertoire analysis. BMC Biotechnol 17:61. https://doi.org/10.1186/s12896-017-0379-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Laydon DJ, Bangham CR, Asquith B (2015) Estimating T‑cell repertoire diversity: limitations of classical estimators and a new approach. Philos Trans R Soc Lond, B, Biol Sci. https://doi.org/10.1098/rstb.2014.0291

    Article  Google Scholar 

  65. 65.

    Reuben A, Zhang J, Chiou S‑H et al (2020) Comprehensive T cell repertoire characterization of non-small cell lung cancer. Nat Commun 11:603. https://doi.org/10.1038/s41467-019-14273-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Charles J, Mouret S, Challende I et al (2020) T‑cell receptor diversity as a prognostic biomarker in melanoma patients. Pigment Cell Melanoma Res 33:612–624. https://doi.org/10.1111/pcmr.12866

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Yager EJ, Ahmed M, Lanzer K et al (2008) Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 205:711–723. https://doi.org/10.1084/jem.20071140

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Turner SJ, Kedzierska K, La Gruta NL et al (2004) Characterization of CD8+ T cell repertoire diversity and persistence in the influenza A virus model of localized, transient infection. Seminars Immunol 16:179–184. https://doi.org/10.1016/j.smim.2004.02.005

    CAS  Article  Google Scholar 

  69. 69.

    Rooney MS, Shukla SA, Wu CJ et al (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61. https://doi.org/10.1016/j.cell.2014.12.033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74. https://doi.org/10.1126/science.aaa4971

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Budczies J, Bockmayr M, Denkert C et al (2016) Pan-cancer analysis of copy number changes in programmed death-ligand 1 (PD-L1, CD274)—associations with gene expression, mutational load, and survival. Genes Chromosom Cancer 55:626–639. https://doi.org/10.1002/gcc.22365

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Bachelot T, Filleron T, Bieche I et al (2021) Durvalumab compared to maintenance chemotherapy in metastatic breast cancer: the randomized phase II Safir02-Breast Immuno trial. Nat Med 27:250–255. https://doi.org/10.1038/s41591-020-01189-2

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Fuchs CS, Doi T, Jang RW et al (2018) Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical keynote-059 trial. JAMA Oncol 4:e180013. https://doi.org/10.1001/jamaoncol.2018.0013

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Shitara K, Özgüroğlu M, Bang YJ et al (2018) Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (Keynote-061): a randomised, open-label, controlled, phase 3 trial. Lancet 392:123–133. https://doi.org/10.1016/s0140-6736(18)31257-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Satoh T, Kang YK, Chao Y et al (2020) Exploratory subgroup analysis of patients with prior trastuzumab use in the Attraction‑2 trial: a randomized phase III clinical trial investigating the efficacy and safety of nivolumab in patients with advanced gastric/gastroesophageal junction cancer. Gastric Cancer 23:143–153. https://doi.org/10.1007/s10120-019-00970-8

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Bang Y‑J, Ruiz EY, Van Cutsem E et al (2018) Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann Oncol 29:2052–2060

    Article  Google Scholar 

  77. 77.

    Kim J, Kim B, Kang SY et al (2020) Tumor mutational burden determined by panel sequencing predicts survival after immunotherapy in patients with advanced gastric cancer. Front Oncol 10:314. https://doi.org/10.3389/fonc.2020.00314

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Smyth EC, Cervantes A (2020) Addition of nivolumab to chemotherapy in patients with advanced gastric cancer: a relevant step ahead, but still many questions to answer. ESMO Open 5:e1107. https://doi.org/10.1136/esmoopen-2020-001107

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Moehler M, Shitara K, Garrido M et al (2020) LBA6_PR Nivolumab (nivo) plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer (GC/GEJC)/esophageal adenocarcinoma (EAC): First results of the CheckMate 649 study. Ann Oncol 31:S1191. https://doi.org/10.1016/j.annonc.2020.08.2296

    Article  Google Scholar 

  80. 80.

    Rizzo A, Ricci AD, Brandi G (2021) PD-L1, TMB, MSI, and other predictors of response to immune checkpoint inhibitors in Biliary tract cancer. Cancers 13:558. https://doi.org/10.3390/cancers13030558

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Ye Y, Zhou L, Xie X et al (2009) Interaction of B7-H1 on intrahepatic cholangiocarcinoma cells with PD‑1 on tumor-infiltrating T cells as a mechanism of immune evasion. J Surg Oncol 100:500–504. https://doi.org/10.1002/jso.21376

    Article  PubMed  Google Scholar 

  82. 82.

    Sabbatino F, Villani V, Yearley JH et al (2016) PD-L1 and HLA class I antigen expression and clinical course of the disease in Intrahepatic cholangiocarcinoma. Clin Cancer Res 22:470–478. https://doi.org/10.1158/1078-0432.Ccr-15-0715

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Camus M, Tosolini M, Mlecnik B et al (2009) Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 69:2685–2693. https://doi.org/10.1158/0008-5472.Can-08-2654

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Krausova M, Korinek V (2014) Wnt signaling in adult intestinal stem cells and cancer. Cell Signal 26:570–579. https://doi.org/10.1016/j.cellsig.2013.11.032

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541:321–330. https://doi.org/10.1038/nature21349

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Schepers A, Clevers H (2012) Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol 4:a7989. https://doi.org/10.1101/cshperspect.a007989

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Luke JJ, Bao R, Sweis RF et al (2019) WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin Cancer Res 25:3074–3083. https://doi.org/10.1158/1078-0432.CCR-18-1942

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567. https://doi.org/10.1038/nature14011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348:74–80. https://doi.org/10.1126/science.aaa6204

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Galon J, Mlecnik B, Bindea G et al (2014) Towards the introduction of the „Immunoscore“ in the classification of malignant tumours. J Pathol 232:199–209. https://doi.org/10.1002/path.4287

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Galon J, Fox BA, Bifulco CB et al (2016) Immunoscore and Immunoprofiling in cancer: an update from the melanoma and immunotherapy bridge 2015. J Transl Med 14:273. https://doi.org/10.1186/s12967-016-1029-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Mlecnik B, Tosolini M, Kirilovsky A et al (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29:610–618. https://doi.org/10.1200/jco.2010.30.5425

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Paijens ST, Vledder A, de Bruyn M et al (2020) Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. https://doi.org/10.1038/s41423-020-00565-9

    Article  PubMed  Google Scholar 

  94. 94.

    Chen B, Khodadoust MS, Liu CL et al (2018) Profiling tumor infiltrating immune cells with cibersort. Methods Mol Biol 1711:243–259. https://doi.org/10.1007/978-1-4939-7493-1_12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Visan I (2017) The interferon signature. Nat Immunol 18:151–151. https://doi.org/10.1038/ni.3670

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Zugazagoitia J, Gupta S, Liu Y et al (2020) Biomarkers associated with beneficial PD‑1 checkpoint blockade in non-small cell lung cancer (NSCLC) identified using high-plex digital spatial profiling. Clin Cancer Res 26:4360–4368. https://doi.org/10.1158/1078-0432.CCR-20-0175

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Singh M, Chaudhry P, Gerdtsson E et al (2017) Highly multiplexed imaging mass cytometry allows visualization of tumor and immune cell interactions of the tumor microenvironment in FFPE tissue sections. Blood 130:2751–2751. https://doi.org/10.1182/blood.V130.Suppl_1.2751.2751

    Article  Google Scholar 

  98. 98.

    Hurton LV, Singh H, Najjar AM et al (2016) Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A 113:E7788–E7797. https://doi.org/10.1073/pnas.1610544113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Routy B, Le Chatelier E, Derosa L et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97. https://doi.org/10.1126/science.aan3706

    CAS  Article  Google Scholar 

  100. 100.

    Vétizou M, Pitt JM, Daillère R et al (2015) Anticancer immunotherapy by CTLA‑4 blockade relies on the gut microbiota. Science 350:1079–1084. https://doi.org/10.1126/science.aad1329

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Gopalakrishnan V, Spencer CN, Nezi L et al (2018) Gut microbiome modulates response to anti-PD‑1 immunotherapy in melanoma patients. Science 359:97–103. https://doi.org/10.1126/science.aan4236

    CAS  Article  Google Scholar 

  102. 102.

    Chaput N, Lepage P, Coutzac C et al (2017) Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 28:1368–1379. https://doi.org/10.1093/annonc/mdx108

    CAS  Article  PubMed  Google Scholar 

  103. 103.

    McQuade JL, Daniel CR, Helmink BA et al (2019) Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol 20:e77–e91. https://doi.org/10.1016/s1470-2045(18)30952-5

    Article  PubMed  Google Scholar 

  104. 104.

    Dubin K, Callahan MK, Ren B et al (2016) Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 7:10391. https://doi.org/10.1038/ncomms10391

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Budczies J, Seidel A, Christopoulos P et al (2018) Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden. OncoImmunology 7:e1526613. https://doi.org/10.1080/2162402x.2018.1526613

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to M. Kloor or A. Stenzinger.

Ethics declarations

Interessenkonflikt

C. Schwab, J. Glade, J. Budczies, K. Kluck, M. Kloor und A. Stenzinger geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Die Autoren C. Schwab und J. Glade teilen sich die Erstautorenschaft. M. Kloor und A. Stenzinger teilen sich die Letztautorenschaft.

figureqr

QR-Code scannen & Beitrag online lesen

Redaktion

T. Seufferlein, Ulm

N. P. Malek, Tübingen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schwab, C., Glade, J., Budczies, J. et al. Prädiktive Biomarker in der immunonkologischen Therapie gastrointestinaler Tumoren: derzeitiger Standard und zukünftige Perspektiven. Gastroenterologe 16, 224–240 (2021). https://doi.org/10.1007/s11377-021-00531-5

Download citation

Schlüsselwörter

  • Checkpointinhibitoren
  • Immuntherapie
  • Biomarker
  • Tumormikromilieu
  • Gastrointestinale Tumoren

Keywords

  • Immune checkpoint inhibitors
  • Immunotherapy
  • Biomarkers
  • Tumor microenvironment
  • Gastrointestinal neoplasms