Skip to main content
Log in

Fibrogenese – Zirrhose

Fibrogenic cirrhosis

Der Gastroenterologe Aims and scope

Cite this article

Zusammenfassung

Die Leberfibrose ist definiert als exzessive Ablagerung von extrazellulärer Matrix. Sie ist die Hauptkomplikation einer chronischen Leberschädigung. Ihr Endstadium, die Leberzirrhose, ist mit hoher Morbidität und Mortalität vergesellschaftet. Für die Akkumulation von extrazellulärer Matrix sind unterschiedliche Zelltypen verantwortlich, die einen myofibroblastenähnlichen Phänotyp annehmen: im Disse-Raum lokalisierte hepatische Sternzellen, portale Fibroblasten und Myofibroblasten aus den periportalen und perizentralen Gebieten, möglicherweise auch Myofibroblasten aus dem Knochenmark. Unterschiede zwischen den Zelltypen hinsichtlich myofibroblastischer Differenzierung, Aktivierung und „Deaktivierung“ wurden zwar beschrieben, doch sind weitere Daten erforderlich insbesondere im Hinblick auf biologische und biochemische Charakterisierung, Interaktionen mit inflammatorischen Zellen und Zytokinzusammensetzung, die zu ihrer Aktivierung oder ihrem Zelltod führt.

Abstract

Liver fibrosis is defined as an excessive deposition of extracellular matrix. It is the main complication in chronic liver damage and its endpoint, liver cirrhosis, is responsible for impressive morbidity and mortality. The accumulation of extracellular matrix proteins in liver fibrosis and cirrhosis is due to different cell types which acquire a myofibroblastic phenotype – the hepatic stellate cells, located in the space of Disse, portal fibroblasts as well as myofibroblasts of the portal and pericentral area and bone marrow derived myofibroblasts. Differences have been reported between the two cell populations with respect to myofibroblastic differentiation, activation and “deactivation”, proliferation and apoptosis. However, in most cases additional confirmation may be required. Thus, the biological and biochemical characterization of these cells, their interactions with inflammatory cells and the cytokine environment leading to their activation or cell death are essential to understand the mechanisms underlying the progressive development of excessive scarring in the liver as well as the ability of the liver to repair tissue and regenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Andrade ZA, Guerret S, Fernandes AL (1999) Myofibroblasts in schistosomal portal fibrosis of man. Mem Inst Oswaldo Cruz 94: 87–93

    PubMed  CAS  Google Scholar 

  2. Arii S, Imamura M (2000) Physiological role of sinusoidal endothelial cells and Kupffer cells and their implication in the pathogenesis of liver injury. J Hepatobiliary Pancreat Surg 7: 40–48

    Article  PubMed  CAS  Google Scholar 

  3. Batusic DS, Armbrust T, Saile B, Ramadori G (2004) Induction of Mx-2 in rat liver by toxic injury. J Hepatol 40: 446–453

    Article  PubMed  CAS  Google Scholar 

  4. Bhunchet E, Wake K (1992) Role of mesenchymal cell populations in porcine serum-induced rat liver fibrosis. Hepatology 16: 1452–1473

    Article  PubMed  CAS  Google Scholar 

  5. Cassiman D, Roskams T (2002) Beauty is in the eye of the beholder: emerging concepts and pitfalls in hepatic stellate cell research. J Hepatol 37: 527–535

    Article  PubMed  Google Scholar 

  6. Costa AM, Tuchweber B, Lamireau T et al. (2003) Role of apoptosis in the remodeling of cholestatic liver injury following release of the mechanical stress. Virchows Arch 442: 372–380

    PubMed  Google Scholar 

  7. Desmet VJ, Roskams T (2004) Cirrhosis reversal: a duel between dogma and myth. J Hepatol 40: 860–867

    Article  PubMed  Google Scholar 

  8. Desmouliere A, Darby I, Costa AM et al. (1997) Extracellular matrix deposition, lysyl oxidase expression, and myofibroblastic differentiation during the initial stages of cholestatic fibrosis in the rat. Lab Invest 76: 765–778

    PubMed  CAS  Google Scholar 

  9. Dudas J, Saile B, El Armouche H et al. (2003) Endoreplication and polyploidy in primary culture of rat hepatic stellate cells. Cell Tissue Res 313: 301–311

    Article  PubMed  CAS  Google Scholar 

  10. Forbes SJ, Russo FP, Rey V et al. (2004) A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 126: 955–963

    Article  PubMed  Google Scholar 

  11. Friedman SL (1999) The virtuosity of hepatic stellate cells. Gastroenterology 117: 1244–1246

    Article  PubMed  CAS  Google Scholar 

  12. Gall EA, Dobrogorski O (1964) Hepatic alterations in obstructive jaundice. Am J Clin Pathol 41: 126–139

    PubMed  CAS  Google Scholar 

  13. Garcia-Banuelos J, Siller-Lopez F, Miranda A et al. (2002) Cirrhotic rat livers with extensive fibrosis can be safely transduced with clinical-grade adenoviral vectors. Evidence of cirrhosis reversion. Gene Ther 9: 127–134

    Article  PubMed  CAS  Google Scholar 

  14. Hammel P, Couvelard A, O’Toole D et al. (2001) Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med 344: 418–423

    Article  PubMed  CAS  Google Scholar 

  15. Hillebrandt S, Wasmuth HE, Weiskirchen R et al. (2005) Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet 37: 835–843

    Article  PubMed  CAS  Google Scholar 

  16. Issa R, Zhou X, Constandinou CM et al. (2004) Spontaneous recovery from micronodular cirrhosis: Evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 126: 1795–1808

    Article  PubMed  CAS  Google Scholar 

  17. Kim WH, Matsumoto K, Bessho K, Nakamura T (2005) Growth inhibition and apoptosis in liver myofibroblasts promoted by hepatocyte growth factor leads to resolution from liver cirrhosis. Am J Pathol 166: 1017–1028

    PubMed  CAS  Google Scholar 

  18. Kisseleva T, Uchinami H, Feirt N et al. (2006) Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 45: 429–438

    Article  PubMed  CAS  Google Scholar 

  19. Knittel T, Kobold D, Saile B et al. (1999) Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 117: 1205–1221

    Article  PubMed  CAS  Google Scholar 

  20. Lorena D, Darby IA, Reinhardt DP et al. (2004) Fibrillin-1 expression in normal and fibrotic rat liver and in cultured hepatic fibroblastic cells: Modulation by mechanical stress and role in cell adhesion. Lab Invest 84: 203–212

    Article  PubMed  CAS  Google Scholar 

  21. Lotersztajn S, Julien B, Teixeira-Clerc F et al. (2005) Hepatic fibrosis: Molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol 45: 605–628

    Article  PubMed  CAS  Google Scholar 

  22. Marra F, Romanelli RG, Giannini C et al. (1999) Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 29: 140–148

    Article  PubMed  CAS  Google Scholar 

  23. Neubauer K, Knittel T, Armbrust T, Ramadori G (1995) Accumulation and cellular localization of fibrinogen/fibrin during short-term and long-term rat liver injury. Gastroenterology 108: 1124–1135

    Article  PubMed  CAS  Google Scholar 

  24. Neubauer K, Ritzel A, Saile B, Ramadori G (2000) Decrease of platelet-endothelial cell adhesion molecule 1-gene-expression in inflammatory cells and in endothelial cells in the rat liver following CCl(4)-administration and in vitro after treatment with TNFalpha. Immunol Lett 74: 153–164

    Article  PubMed  CAS  Google Scholar 

  25. Parsons CJ, Bradford BU, Pan CQ et al. (2004) Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology 40: 1106–1115

    Article  PubMed  CAS  Google Scholar 

  26. Perez-Tamayo R (1979) Cirrhosis of the liver: a reversible disease? Pathol Annu 14: 183–213

    PubMed  Google Scholar 

  27. Ramadori G, Saile B (2002) Mesenchymal cells in the liver–one cell type or two? Liver 22: 283–294

    Article  PubMed  CAS  Google Scholar 

  28. Ramadori G, Saile B (2004) Portal tract fibrogenesis in the liver. Lab Invest 84: 153–159

    Article  PubMed  Google Scholar 

  29. Roderfeld M, Hemmann S, Roeb E (2007) Mechanisms of fibrinolysis in chronic liver injury (with special emphasis on MMPs and TIMPs). Z Gastroenterol 45: 25–33

    Article  PubMed  CAS  Google Scholar 

  30. Russo FP, Alison MR, Bigger BW et al. (2006) The bone marrow functionally contributes to liver fibrosis. Gastroenterology 130: 1807–1821

    Article  PubMed  Google Scholar 

  31. Saile B, Knittel T, Matthes N et al. (1997) CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatic tissue repair. Am J Pathol 151: 1265–1272

    PubMed  CAS  Google Scholar 

  32. Saile B, Matthes N, Knittel T, Ramadori G (1999) Transforming growth factor beta and tumor necrosis factor alpha inhibit both apoptosis and proliferation of activated rat hepatic stellate cells. Hepatology 30: 196–202

    Article  PubMed  CAS  Google Scholar 

  33. Sakaida I, Terai S, Yamamoto N et al. (2004) Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 40: 1304–1311

    Article  PubMed  Google Scholar 

  34. Sancho-Bru P, Bataller R, Gasull X et al. (2005) Genomic and functional characterization of stellate cells isolated from human cirrhotic livers. J Hepatol 43: 272–282

    Article  PubMed  CAS  Google Scholar 

  35. Sohara N, Znoyko I, Levy MT et al. (2002) Reversal of activation of human myofibroblast-like cells by culture on a basement membrane-like substrate. J Hepatol 37: 214–221

    Article  PubMed  CAS  Google Scholar 

  36. Stickel F, Osterreicher CH, Datz C et al. (2005) Prediction of progression to cirrhosis by a glutathione S-transferase P1 polymorphism in subjects with hereditary hemochromatosis. Arch Intern Med 165: 1835–1840

    Article  PubMed  CAS  Google Scholar 

  37. Wanless IR, Crawford JM (eds) (2004) Cirrhosis. Surgical pathology of the GI tract, liver, biliary tract, and pancreas. Saunders, Philadelphia, pp 863–884

  38. Wanless IR, Nakashima E, Sherman M (2000) Regression of human cirrhosis: Morphologic features and the genesis of incomplete septal cirrhosis. Arch Pathol Lab Med 124: 1599–1607

    PubMed  CAS  Google Scholar 

Download references

Danksagung

Diese Arbeit wurde unterstützt von der Deutschen Forschungsgemeinschaft (SFB 402, Projekt C6) und vom Kompetenznetz Hepatitis (Projekt 11.2).

Interessenkonflikt

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ramadori.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saile, B., Ramadori, G. Fibrogenese – Zirrhose. Gastroenterologe 2, 228–237 (2007). https://doi.org/10.1007/s11377-007-0092-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11377-007-0092-7

Schlüsselwörter

Keywords

Navigation