Skip to main content
Log in

Interactions between M protein and other structural proteins of severe, acute respiratory syndrome-associated coronavirus

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) structural proteins (S, E, M, and NC) localize in different subcellular positions when expressed individually. However, SARS-CoV M protein is co-localized almost entirely with S, E, or NC protein when co-expressed in the cells. On the other hand, only partial co-localization was observed when S and E, S and NC, or E and NC were co-expressed in the cells. Interactions between SARS-CoV M and other structural proteins but not interactions between S and E, S and NC, or E and NC were further demonstrated by co-immunoprecipitation assay. These results indicate that SARS-CoV M protein, similar to the M proteins of other coronaviruses, plays a pivotal role in virus assembly. The cytoplasmic C-terminus domain of SARS-CoV M protein was responsible for binding to NC protein. Multiple regions of M protein interacted with E and S proteins. A model for the interactions between SARS-CoV M protein and other structural proteins is proposed. This study helps us better understand protein-protein interactions during viral assembly of SARS-CoV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Poon LL, Guan Y, Nicholls JM, Yuen KY, Peiris JS (2004) The aetiology, origins, and diagnosis of severe acute respiratory syndrome. Lancet Infect Dis 4:663–671

    Article  PubMed  CAS  Google Scholar 

  2. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399

    Article  PubMed  CAS  Google Scholar 

  3. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY, SARS study group (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325

    Google Scholar 

  4. Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, Ling AE, Chan PK, Tam JS, Zambon MC, Gopal R, Drosten C, van der Werf S, Escriou N, Manuguerra JC, Stohr K, Peiris JS, Osterhaus AD (2003) Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263–270

    Article  PubMed  CAS  Google Scholar 

  5. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, Zhuang H, Wu B, Zhong H, Shao H, Fang W, Gao D, Pei F, Li X, He Z, Xu D, Shi X, Anderson VM, Leong AS (2005) Multiple organ infection and the pathogenesis of SARS. J Exp Med 202:415–424

    Article  PubMed  CAS  Google Scholar 

  6. Wang H, Rao S, Jiang C (2007) Molecular pathogenesis of severe acute respiratory syndrome. Microbes Infect 9:119–126

    Article  PubMed  CAS  Google Scholar 

  7. Enserink M (2003) Infectious diseases. Clues to the animal origins of SARS. Science 300:1351

    Article  PubMed  CAS  Google Scholar 

  8. Holmes KV, Enjuanes L (2003) Virology. The SARS coronavirus: a postgenomic era. Science 300:1377–1378

    Article  PubMed  CAS  Google Scholar 

  9. Lai M (2003) SARS virus: the beginning of the unraveling of a new coronavirus. J Biomed Sci 10:664–675

    Article  PubMed  CAS  Google Scholar 

  10. Holmes K, Lai MM (1996) Coronaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology, vol 1. Lippincott-Raven Publishers, Philadelphia, pp 1075–1093

  11. Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Weissbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84:2305–2315

    Article  PubMed  CAS  Google Scholar 

  12. Nguyen VP, Hogue BG (1997) Protein interactions during coronavirus assembly. J Virol 71:9278–9284

    PubMed  CAS  Google Scholar 

  13. Nguyen VP, Hogue BG (1998) Coronavirus envelope glycoprotein assembly complexes. Adv Exp Med Biol 440:361–365

    PubMed  CAS  Google Scholar 

  14. Vennema H, Godeke GJ, Rossen JW, Voorhout WF, Horzinek MC, Opstelten DJ, Rottier PJ (1996) Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J 15:2020–2028

    PubMed  CAS  Google Scholar 

  15. de Haan CA, Kuo L, Masters PS, Vennema H, Rottier PJ (1998) Coronavirus particle assembly: primary structure requirements of the membrane protein. J Virol 72:6838–6850

    PubMed  Google Scholar 

  16. Narayanan K, Maeda A, Maeda J, Makino S (2000) Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol 74:8127–8134

    Article  PubMed  CAS  Google Scholar 

  17. Godeke GJ, de Haan CA, Rossen JW, Vennema H, Rottier PJ (2000) Assembly of spikes into coronavirus particles is mediated by the carboxy-terminal domain of the spike protein. J Virol 74:1566–1571

    Article  PubMed  CAS  Google Scholar 

  18. Opstelten DJ, Raamsman MJ, Wolfs K, Horzinek MC, Rottier PJ (1995) Envelope glycoprotein interactions in coronavirus assembly. J Cell Biol 131:339–349

    Article  PubMed  CAS  Google Scholar 

  19. Rottier P, Brandenburg D, Armstrong J, van der Zeijst B, Warren G (1984) In vitro assembly of the murine coronavirus membrane protein E1. Adv Exp Med Biol 173:53–64

    PubMed  CAS  Google Scholar 

  20. Rottier PJ, Welling GW, Welling-Wester S, Niesters HG, Lenstra JA, Van der Zeijst BA (1986) Predicted membrane topology of the coronavirus protein E1. Biochemistry 25:1335–1339

    Article  PubMed  CAS  Google Scholar 

  21. Stertz S, Reichelt M, Spiegel M, Kuri T, Martinez-Sobrido L, Garcia-Sastre A, Weber F, Kochs G (2007) The intracellular sites of early replication and budding of SARS-coronavirus. Virology 361:304–315

    Article  PubMed  CAS  Google Scholar 

  22. McBride CE, Li J, Machamer CE (2007) The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. J Virol 81:2418–2428

    Article  PubMed  CAS  Google Scholar 

  23. Hsieh PK, Chang SC, Huang CC, Lee TT, Hsiao CW, Kou YH, Chen IY, Chang CK, Huang TH, Chang MF (2005) Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J Virol 79:13848–13855

    Article  PubMed  CAS  Google Scholar 

  24. Lee YN, Chen LK, Ma HC, Yang HH, Li HP, Lo SY (2005) Thermal aggregation of SARS-CoV membrane protein. J Virol Methods 129:152–161

    Article  PubMed  CAS  Google Scholar 

  25. Ma HC, Fang CP, Hsieh YC, Chen SC, Li HC, Lo SY (2008) Expression and membrane integration of SARS-CoV M protein. J Biomed Sci 15:301–310

    Article  PubMed  Google Scholar 

  26. Ma HC, Ku YY, Hsieh YC, Lo SY (2007) Characterization of the cleavage of signal peptide at the C-terminus of hepatitis C virus core protein by signal peptide peptidase. J Biomed Sci 14:31–41

    Article  PubMed  Google Scholar 

  27. Fuerst TR, Niles EG, Studier FW, Moss B (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 83:8122–8126

    Article  PubMed  CAS  Google Scholar 

  28. Ma HC, Ke CH, Hsieh TY, Lo SY (2002) The first hydrophobic domain of the hepatitis C virus E1 protein is important for interaction with the capsid protein. J Gen Virol 83:3085–3092

    PubMed  CAS  Google Scholar 

  29. Ma HC, Lin TW, Li H, Iguchi-Ariga SM, Ariga H, Chuang YL, Ou JH, Lo SY (2008) Hepatitis C virus ARFP/F protein interacts with cellular MM-1 protein and enhances the gene trans-activation activity of c-Myc. J Biomed Sci 15:417–425

    Article  PubMed  CAS  Google Scholar 

  30. Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, Kam J, Staropoli I, Crescenzo-Chaigne B, Escriou N, van der Werf S, Yuen KY, Altmeyer R (2005) Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol 86:1423–1434

    Article  PubMed  CAS  Google Scholar 

  31. Ho Y, Lin PH, Liu CY, Lee SP, Chao YC (2004) Assembly of human severe acute respiratory syndrome coronavirus-like particles. Biochem Biophys Res Commun 318:833–838

    Article  PubMed  Google Scholar 

  32. Huang Y, Yang ZY, Kong WP, Nabel GJ (2004) Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production. J Virol 78:12557–12565

    Article  PubMed  CAS  Google Scholar 

  33. Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  PubMed  CAS  Google Scholar 

  34. Fang X, Ye L, Timani KA, Li S, Zen Y, Zhao M, Zheng H, Wu Z (2005) Peptide domain involved in the interaction between membrane protein and nucleocapsid protein of SARS-associated coronavirus. J Biochem Mol Biol 38:381–385

    PubMed  CAS  Google Scholar 

  35. Luo H, Wu D, Shen C, Chen K, Shen X, Jiang H (2006) Severe acute respiratory syndrome coronavirus membrane protein interacts with nucleocapsid protein mostly through their carboxyl termini by electrostatic attraction. Int J Biochem Cell Biol 38:589–599

    Article  PubMed  CAS  Google Scholar 

  36. Yuan Q, Liao Y, Torres J, Tam JP, Liu DX (2006) Biochemical evidence for the presence of mixed membrane topologies of the severe acute respiratory syndrome coronavirus envelope protein expressed in mammalian cells. FEBS Lett 580:3192–3200

    Article  PubMed  CAS  Google Scholar 

  37. de Haan CA, Smeets M, Vernooij F, Vennema H, Rottier PJ (1999) Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. J Virol 73:7441–7452

    PubMed  Google Scholar 

Download references

Acknowledgement

This work has been supported by grants from Tzu Chi University (TCIRP95002-01 and TCIRP96004-05) and from National Science Council of Taiwan (NSC 96-3112-B-320-001) to Dr. Shih-Yen Lo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Yen Lo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 242 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, YC., Li, HC., Chen, SC. et al. Interactions between M protein and other structural proteins of severe, acute respiratory syndrome-associated coronavirus. J Biomed Sci 15, 707–717 (2008). https://doi.org/10.1007/s11373-008-9278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-008-9278-3

Keywords