Skip to main content
Log in

Knockdown of zebrafish Nav1.6 sodium channel impairs embryonic locomotor activities

  • Published:
Journal of Biomedical Science

Abstract

Although multiple subtypes of sodium channels are expressed in most neurons, the specific contributions of the individual sodium channels remain to be studied. The role of zebrafish Nav1.6 sodium channels in the embryonic locomotor movements has been investigated by the antisense morpholino (MO) knockdown. MO1 and MO2 are targeted at the regions surrounding the translation start site of zebrafish Nav1.6 mRNA. MO3 is targeted at the RNA splicing donor site of exon 2. The correctly spliced Nav1.6 mRNA of MO3 morphants is 6% relative to that of the wild-type embryos. Nav1.6-targeted MO1, MO2 and MO3 attenuate the spontaneous contraction, tactile sensitivity, and swimming in comparison with a scrambled morpholino and mutated MO3 morpholino. No significant defect is observed in the development of slow muscles, the axonal projection of primary motoneurons, and neuromuscular junctions. The movement impairments caused by MO1, MO2, and MO3 suggest that the function of Nav1.6 sodium channels is essential on the normal early embryonic locomotor activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tzoumaka E., Tischler A.C., Sangameswaran L., Eglen R.M., Hunter J.C., Novakovic S.D. (2000) Differential distribution of the tetrodotoxin-sensitive rPN4/NaCh6/Scn8a sodium channel in the nervous system. J. Neurosci. Res. 60:37–44

    Article  PubMed  CAS  Google Scholar 

  2. Caldwell J.H., Schaller K.L., Lasher R.S., Peles E., Levinson S.R. (2000) Sodium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. Proc. Natl. Acad. Sci. U.S.A. 97:5616–5620

    Article  PubMed  CAS  Google Scholar 

  3. Krzemien D.M., Schaller K.L., Levinson S.R., Caldwell J.H. (2000) Immunolocalization of sodium channel isoform NaCh6 in the nervous system. J. Comp. Neurol. 420:70–83

    Article  PubMed  CAS  Google Scholar 

  4. Burgess D.L., Kohrman D.C., Galt J., Plummer N.W., Jones J.M., Spear B., Meisler M.H. (1995) Mutation of a new sodium channel gene, Scn8a, in the mouse mutant ‹motor endplate disease’. Nat. Genet. 10:461–465

    Article  PubMed  CAS  Google Scholar 

  5. Kearney J.A., Buchner D.A., De H.G., Adamska M., Levin S.I., Furay A.R., Albin R.L., Jones J.M., Montal M., Stevens M.J., Sprunger L.K., Meisler M.H. (2002) Molecular and pathological effects of a modifier gene on deficiency of the sodium channel Scn8a (Na(v)1.6). Hum. Mol. Genet. 11:2765–2775

    Article  PubMed  CAS  Google Scholar 

  6. Levin S.I., Khaliq Z.M., Aman T.K., Grieco T.M., Kearney J.A., Raman I.M., Meisler M.H. (2006) Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar purkinje neurons and granule cells. J Neurophysiol 96:785–793

    Article  PubMed  CAS  Google Scholar 

  7. Raman I.M., Sprunger L.K., Meisler M.H., Bean B.P. (1997) Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19:881–891

    Article  PubMed  CAS  Google Scholar 

  8. Garcia K.D., Sprunger L.K., Meisler M.H., Beam K.G. (1998) The sodium channel Scn8a is the major contributor to the postnatal developmental increase of sodium current density in spinal motoneurons. J. Neurosci. 18:5234–5239

    PubMed  CAS  Google Scholar 

  9. Tsai C.W., Tseng J.J., Lin S.C., Chang C.Y., Wu J.L., Horng J.F., Tsay H.J. (2001) Primary structure and developmental expression of zebrafish sodium channel Na(v)1.6 during neurogenesis. DNA Cell Biol. 20:249–255

    Article  PubMed  CAS  Google Scholar 

  10. Novak A.E., Taylor A.D., Pineda R.H., Lasda E.L., Wright M.A., Ribera A.B. (2006) Embryonic and larval expression of zebrafish voltage-gated sodium channel alpha-subunit genes. Dev. Dyn. 235:1962–1973

    Article  PubMed  CAS  Google Scholar 

  11. Pineda R.H., Heiser R.A., Ribera A.B. (2005) Developmental, molecular, and genetic dissection of INa in␣vivo in embryonic zebrafish sensory neurons. J. Neurophysiol. 93:3582–3593

    Article  PubMed  CAS  Google Scholar 

  12. Pineda R.H., Svoboda K.R., Wright M.A., Taylor A.D., Novak A.E., Gamse J.T., Eisen J.S., Ribera A.B. (2006) Knockdown of Nav 1.6a Na+ channels affects zebrafish motoneuron development. Development 133:3827–3836

    Article  PubMed  CAS  Google Scholar 

  13. Saint-Amant L., Drapeau P. (1998) Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 37:622–632

    Article  PubMed  CAS  Google Scholar 

  14. Buss R.R., Drapeau P. (2001) Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. J. Neurophysiol. 86:197–210

    PubMed  CAS  Google Scholar 

  15. Svoboda K.R., Linares A.E., Ribera A.B. (2001) Activity regulates programmed cell death of zebrafish Rohon-Beard neurons. Development 128:3511–3520

    PubMed  CAS  Google Scholar 

  16. Devoto S.H., Melancon E., Eisen J.S., Westerfield M. (1996) Identification of separate slow and fast muscle precursor cells in␣vivo, prior to somite formation. Development 122:3371–3380

    PubMed  CAS  Google Scholar 

  17. Crow M.T., Stockdale F.E. (1986) Myosin expression and specialization among the earliest muscle fibers of the developing avian limb. Dev. Biol. 113:238–254

    Article  PubMed  CAS  Google Scholar 

  18. Downes G.B., Granato M. (2004) Acetylcholinesterase function is dispensable for sensory neurite growth but is critical for neuromuscular synapse stability. Dev. Biol. 270:232–245

    Article  PubMed  CAS  Google Scholar 

  19. Saint-Amant L., Drapeau P. (2001) Synchronization of an embryonic network of identified spinal interneurons solely by electrical coupling. Neuron 31:1035–1046

    Article  PubMed  CAS  Google Scholar 

  20. Personius K.E., Balice-Gordon R.J. (2000) Activity-dependent editing of neuromuscular synaptic connections. Brain Res. Bull. 53:513–522

    Article  PubMed  CAS  Google Scholar 

  21. Bulman D.E. (1997) Phenotype variation and newcomers in ion channel disorders. Hum. Mol. Genet. 6:1679–1685

    Article  PubMed  CAS  Google Scholar 

  22. Lai J., Gold M.S., Kim C.S., Bian D., Ossipov M.H., Hunter J.C., Porreca F. (2002) Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain 95:143–152

    Article  PubMed  CAS  Google Scholar 

  23. Akopian A.N., Souslova V., England S., Okuse K., Ogata N., Ure J., Smith A., Kerr B.J., McMahon S.B., Boyce S., Hill R., Stanfa L.C., Dickenson A.H., Wood J.N. (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat. Neurosci. 2:541–548

    Article  PubMed  CAS  Google Scholar 

  24. Escayg A., MacDonald B.T., Meisler M.H., Baulac S., Huberfeld G., An-Gourfinkel I., Brice A., LeGuern E., Moulard B., Chaigne D., Buresi C., Malafosse A. (2000) Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat. Genet. 24:343–345

    Article  PubMed  CAS  Google Scholar 

  25. Planells-Cases R., Caprini M., Zhang J., Rockenstein E.M., Rivera R.R., Murre C., Masliah E., Montal M. (2000) Neuronal death and perinatal lethality in voltage-gated sodium channel alpha(II)-deficient mice. Biophys. J. 78:2878–2891

    PubMed  CAS  Google Scholar 

  26. Meisler M.H., Kearney J., Escayg A., MacDonald B.T., Sprunger L.K. (2001) Sodium channels and neurological disease: insights from Scn8a mutations in the mouse. Neuroscientist 7:136–145

    Article  PubMed  CAS  Google Scholar 

  27. Drapeau P., Saint-Amant L., Buss R.R., Chong M., McDearmid J.R., Brustein E. (2002) Development of the locomotor network in zebrafish. Prog. Neurobiol. 68:85–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yen-Jen Sung, Chen Jen Huang, and Sheng-Ping Huang for their technical assistance. The work was supported by grants from the National Science Council, ROC (NSC93–2321-B010–009; NSC94-2321-B-010-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huey-Jen Tsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YH., Huang, FL., Cheng, YC. et al. Knockdown of zebrafish Nav1.6 sodium channel impairs embryonic locomotor activities. J Biomed Sci 15, 69–78 (2008). https://doi.org/10.1007/s11373-007-9200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9200-4

Keywords

Navigation