Skip to main content
Log in

Influence of nitric oxide-mediated vasodilation on the blood pressure measured with the tail-cuff method in the rat

  • Published:
Journal of Biomedical Science

Abstract

Systolic blood pressure (SBP) is frequently measured in rats by the tail cuff method, which usually comprises pulse/flow disappearance and reappearance during cuff inflation (Inf) and deflation (Def), separated by an interval between cycles (IBC). Although Def values are habitually used to estimate SBP, in 58 Wistar rats we found (Def–Inf) to be −6 ± 1 mmHg, indicating that Def  < Inf in most cases. When the IBC was lengthened to 2 min, (Def–Inf) was increased to −17 ± 2 mmHg, indicating the probable accumulation of a vasodilating metabolite. This increase of (Def–Inf) was prevented by papaverine, indicating its relation to smooth muscle contractility. Adrenergic blockade did not prevent the increase of (Def–Inf), but pretreatment with L-NAME decreased it to −5 ± 2 mmHg (p < 0.05). Simultaneous measurement of SBP by tail-cuff method and carotid cannulation revealed that the Inf value was the most accurate estimation of intravascular SBP. We conclude that: (1) the Inf value should be taken as representative of SBP, since depending on the duration of suprasystolic compression the Def value can underestimate it, and (2) nitric oxide accumulation due to flow deprivation was the main cause of SBP underestimation by Def values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Vliet V.N., Chafe L.L., Antic V., Schnyder-Candrian S., Montani J.-P., Direct and indirect methods used to study arterial blood pressure. J. Pharmacol. Toxicol. Methods 44: 361–373, 2000.

    Article  PubMed  Google Scholar 

  2. Byrom F.B., Wilson C., A plethysmographic method for measuring systolic blood pressure in the intact rat. J. Physiol. 93: 301–304, 1938.

    PubMed  CAS  Google Scholar 

  3. Dodson L.F., Mackaness G.B., The estimation of basal blood pressure in rat by tail oscilloscope. Br. J. Exp. Pathol. 38(6): 618–627, 1957.

    PubMed  CAS  Google Scholar 

  4. Lucas J., A modified indirect method of blood pressure measurement in the conscious and anaesthetized rat. J. Physiol. 218(1): 1P–3P, 1971.

    PubMed  CAS  Google Scholar 

  5. Martinelli J.G., Beraldo P.S., Campos G.P., da Costa e Silva A., A new plethysmograph for detecting arterial pulse waves in rat tail. Nephron 39(1): 61–63, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Sobin S.S., Accuracy of indirect determinations of blood pressure in the rat; relation to temperature of plethysmograph and width of cuff. Am. J. Physiol. 146: 179–186, 1946.

    Google Scholar 

  7. Maistrello I., Matscher R., Measurement of systolic blood pressure of rats comparison of intraarterial and cuff values. J. Appl. Physiol. 26: 188–193, 1969.

    PubMed  CAS  Google Scholar 

  8. Buñag R.D., Riley E., Simultaneous measurements in awake rats of drug-induced changes in carotid and tail-cuff systolic pressures. J. Appl. Physiol. 36(5): 621–624, 1974.

    PubMed  Google Scholar 

  9. Newman D.L., Looker T., Simultaneous measurement of the systolic blood pressure and heart rate in the rat by a transcutaneous method. Lab. Anim. 6(2): 207–211, 1972.

    Article  PubMed  CAS  Google Scholar 

  10. Reichle F.A., Noninvasive blood pressure measurement in the rat by ultrasonic auscultation. J. Surg. Res. 11: 539–544, 1971.

    Article  PubMed  CAS  Google Scholar 

  11. Rowberg A., Franklin D., Van Citters R.L., Nontraumatic method for measurement of blood pressure in animals with tails. J. Appl. Physiol. 27: 301–302, 1969.

    PubMed  CAS  Google Scholar 

  12. Hermansen K., A new method for determination of the systolic blood pressure in conscious rats. Life Sci. 9: 1233–1237, 1970.

    Article  CAS  Google Scholar 

  13. Ikeda K., Nara Y., Yamori Y., Systolic and mean blood pressure determination by a new tail cuff method in spontaneously hypertensive rats. Lab. Anim. 25(1): 26–29, 1991.

    Article  PubMed  CAS  Google Scholar 

  14. Lee R.P., Wang D., Lin N.T., Chou Y.W., Chen H.I., Modified technique for tail cuff pressure measurement in unrestrained conscious rats. J. Biomed. Sci. 9(5): 424–427, 2002.

    Article  PubMed  Google Scholar 

  15. Palbøl J., Henningsen J., Blood pressure measurements in the conscious rat. An improved photoelectric, sphygmomanometric device. Scand. J. Urol. Nephrol. 13(3): 319–321, 1979.

    Article  Google Scholar 

  16. Wen S.F., Tremblay J.M., Qu M.H., Webster J.G., Impedance method for blood pressure measurement in awake rats without preheating. Hypertension 11(4): 371–375, 1988.

    PubMed  CAS  Google Scholar 

  17. Buñag R.D., Pressor effects of the tail-cuff method in awake normotensive and hypertensive rats. J. Lab. Clin. Med. 78(4): 675–682, 1971.

    PubMed  Google Scholar 

  18. Fregly M.J., Factors affecting indirect determination of systolic blood pressure of rats. J. Lab. Clin. Med. 62: 223–230, 1963.

    PubMed  CAS  Google Scholar 

  19. Friedman M., Freed S.C., Microphonic manometer for indirect determination of systolic blood pressure in the rat. Proc. Soc. Exp. Biol. Med. 70: 670–672, 1949.

    PubMed  CAS  Google Scholar 

  20. Resurreccion A.V., Caster W.O., Problems in the interpretation of blood pressure changes seen in rats fed a breakfast cereal. Life Sci. 22:1821–1826, 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Pfeffer J.M., Pfeffer M.A., Frohlich E.D., Validity of an indirect tail-cuff method for determining systolic arterial pressure in unanesthetized normotensive and spontaneously hypertensive rats. J. Lab. Clin. Med. 78(6): 957–962, 1971.

    PubMed  CAS  Google Scholar 

  22. Irvine R.J., White J., Chan R., The influence of restraint on blood pressure in the rat. J. Pharmacol. Toxicol. Methods 38(3): 157–162, 1997.

    Article  PubMed  CAS  Google Scholar 

  23. Kusaka M., Kishi K., Sokabe H., Does so-called streptozocin hypertension exist in rats? Hypertension 10(5): 517–521, 1987.

    PubMed  CAS  Google Scholar 

  24. Bazil M.K., Krulan C., Webb R.L., Monitoring of cardiovascular parameters in conscious spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 22(6):897–905, 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Buñag R.D., Mueting N., Riley E., Regional vascular influences on tail-cuff measurements of drug-induced changes in systolic pressure. J. Appl. Physiol. 39:724–727, 1975.

    PubMed  Google Scholar 

  26. Yamakoshi K.I., Shimazu H., Togawa T., Indirect measurement of instantaneous arterial blood pressure in the rat. Am. J. Physiol. 237(5): H632–H637, 1979.

    PubMed  CAS  Google Scholar 

  27. Swales J.D., Tange J.D., A photoelectric method of blood pressure measurement in the rat. J. Lab. Clin. Med. 75: 879–885, 1970.

    PubMed  CAS  Google Scholar 

  28. Dowd D.A., Jones D.R., A method for recording baby rat systolic blood pressures. J. Appl. Physiol. 25: 772–774, 1968.

    PubMed  CAS  Google Scholar 

  29. Buñag R.D., Validation in awake rats of a tail-cuff method for measuring systolic pressure. J. Appl. Physiol. 34: 279–282, 1973.

    PubMed  Google Scholar 

  30. Needleman P., Johnson M. Jr., Vasodilators and the treatment of angina. In: Goodman Gilman A., Goodmsn L.S., Gilman A. (Eds), Goodman and Gilman´s The Pharmacological Basis of Therapeutics. 6th edn., Macmillan Publishing Inc., Co, New York, 1980, pp. 830.

    Google Scholar 

  31. Moncada S., Higgs E.A., The discovery of nitric oxide and its role in vascular biology. Br. J. Pharmacol. 147: S193–S201, 2006.

    Article  PubMed  CAS  Google Scholar 

  32. Münzel T., Afanas’ev I.B., Kleschyov A.L., Harrison D.G., Detection of Superoxide in Vascular Tissue. tissues. Arterioscler. Thromb. Vasc. Biol. 22:1761–1768, 2002.

    Article  PubMed  Google Scholar 

  33. Kojda G., Harrison D., Interactions between NO and reactive oxygen species: patophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc. Res. 43:562–571, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Villa L.M., Salas E., Darley-Usmar V.M., Radomski M.W., Moncada S., Peroxynitrite induces both vasodilation and impaired vascular relaxation in the isolated perfused rat heart. Proc. Natl. Acad. Sci. USA, 91:12383–12387, 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Liu S., Beckman J.S., Ku D.D., Peroxynitrite, a product of superoxide and nitric oxide, produces coronary vasorelaxation in dogs. J. Pharmacol. Exp. Ther. 268:1114–1121, 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Rinaldi.

Additional information

Mariana Fritz—Recipient of a Fellowship from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT), República Argentina.

Gustavo Rinaldi—Established Investigator of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), República Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, M., Rinaldi, G. Influence of nitric oxide-mediated vasodilation on the blood pressure measured with the tail-cuff method in the rat. J Biomed Sci 14, 757–765 (2007). https://doi.org/10.1007/s11373-007-9191-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9191-1

Keywords

Navigation