Journal of Biomedical Science

, Volume 12, Issue 6, pp 881–898 | Cite as

The integrin α6β1 modulation of PI3K and Cdc42 activities induces dynamic filopodium formation in human platelets

  • Jui-Chin Chang
  • Hsin-Hou Chang
  • Chien-Ting Lin
  • Szecheng J. Lo


Platelets are an ideal model for studying a rapid morphological change in response to various signal transduction systems. Morphological changes via the activation of integrin αIIbβ3 in platelets have been investigated intensively. In contrast, activation via integrin α6β1 is less well studied. Here, we provide the first biochemical evidence that integrins α6β1 and αIIbβ3 of platelets are associated with different membrane proteins. We also demonstrate that platelets activated by integrin α6β1 show dynamic change by actively forming filopodia and never fully spreading over a period of more than an hour. In addition, platelets activated by integrin α6β1 are different from those activated by integrin αIIbβ3 in terms of cell–substrate contact and in their distribution pattern of actin, Arp2/3 and various phosphotyrosine proteins. The morphological appearance of platelets produced through integrin α6β1 activation is highly dependent on PI3 kinase (PI3K) but less dependent on Src kinase. Suppression of PI3K activity in integrin α6β1 activated platelets induces an increase in Cdc42 activity and more filopodium formation. However, both Cdc42 and PI3K activity are higher in platelets activated by integrin α6β1 than in those activated by integrin αIIbβ3. Taken together, this study demonstrates that the signals induced by integrin α6β1 modulate at the level of PI3K and Cdc42 activity to allow platelets to actively form filopodia.


actin-cytoskeleton Cdc42 filopodium integrins laminin receptor morphological change rhodostomin signal transduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Italiano J.E. Jr., Bergmeier W., Tiwari S., Falet H., Hartwig J.H., Hoffmeister K.M., Andre P., Wagner D.D., Shivdasani R.A. (2003) Mechanisms and implications of platelet discoid shape. Blood 101:4789–96CrossRefPubMedGoogle Scholar
  2. 2.
    de Gaetano G. (2001) Historical overview of the role of platelets in hemostasis and thrombosis. Haematologica 86:349–56PubMedGoogle Scholar
  3. 3.
    Shattil S.J., Newman P.J. (2004) Integrins: Dynamic Scaffolds for Adhesion and Signaling in Platelets. Blood 104:1606–1615PubMedCrossRefGoogle Scholar
  4. 4.
    Gruner S., Prostredna M., Schulte V., Krieg T., Eckes B., Brakebusch C., Nieswandt B. (2003) Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood 102:4021–7CrossRefPubMedGoogle Scholar
  5. 5.
    Heemskerk J.W., Bevers E.M., Lindhout T. (2002) Platelet activation and blood coagulation. Thromb Haemost 88:186–93PubMedGoogle Scholar
  6. 6.
    Ofosu F.A. (2002) The blood platelet as a model for regulating blood coagulation on cell surfaces and its consequences. Biochemistry (Mosc) 67:47–55CrossRefGoogle Scholar
  7. 7.
    Ni H. and Freedman J., Platelets in hemostasis and thrombosis: role of integrins and their ligands. Transfus. Apheresis. Sci. 28: 257–264, 2003Google Scholar
  8. 8.
    Wagner D.D., Burger P.C. (2003) Platelets in inflammation and thrombosis. Arterioscler Thromb Vasc Biol 23:2131–7CrossRefPubMedGoogle Scholar
  9. 9.
    Juliano R.L. (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 42:283–323PubMedCrossRefGoogle Scholar
  10. 10.
    Danen E.H., Sonnenberg A. (2003) Integrins in regulation of tissue development and function. J Pathol 201:632–41CrossRefPubMedGoogle Scholar
  11. 11.
    Ridley A.J., Schwartz M.A., Burridge K., Firtel R.A., Ginsberg M.H., Borisy G., Parsons J.T., Horwitz A.R. (2003) Cell migration: integrating signals from front to back. Science 302:1704–9CrossRefPubMedGoogle Scholar
  12. 12.
    Guo W., Giancotti F.G. (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5:816–26PubMedCrossRefGoogle Scholar
  13. 13.
    Hynes R.O. (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–87CrossRefPubMedGoogle Scholar
  14. 14.
    Shattil S.J., Ginsberg M.H., Brugge J.S. (1994) Adhesive signaling in platelets. Curr Opin Cell Biol 6:695–704CrossRefPubMedGoogle Scholar
  15. 15.
    Sonnenberg A., Modderman P.W, Hogervorst F. (1988) Laminin receptor on platelets is the integrin VLA-6. Nature 336:487–9CrossRefPubMedGoogle Scholar
  16. 16.
    Sonnenberg A., Gehlsen K.R., Aumailley M., Timpl R. (1991) Isolation of alpha 6 beta 1 integrins from platelets and adherent cells by affinity chromatography on mouse laminin fragment E8 and human laminin pepsin fragment. Exp Cell Res 197:234–44CrossRefPubMedGoogle Scholar
  17. 17.
    Sasaki T., Fassler R., Hohenester E. (2004) Laminin: the crux of basement membrane assembly. J Cell Biol 164:959–63CrossRefPubMedGoogle Scholar
  18. 18.
    Colognato H., Yurchenco P.D. (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–34CrossRefPubMedGoogle Scholar
  19. 19.
    Tandon N.N., Holland E.A., Kralisz U., Kleinman H.K., Robey F.A., Jamieson G.A. (1991) Interaction of human platelets with laminin and identification of the 67 kDa laminin receptor on platelets. Biochem J 274:535–42PubMedGoogle Scholar
  20. 20.
    Geberhiwot T., Ingerpuu S., Pedraza C., Neira M., Lehto U., Virtanen I., Kortesmaa J., Tryggvason K., Engvall E., Patarroyo M. (1999) Blood platelets contain and secrete laminin-8 (alpha4beta1gamma1) and adhere to laminin-8 via alpha6beta1 integrin. Exp Cell Res 253:723–32CrossRefPubMedGoogle Scholar
  21. 21.
    Hartwig J.H., Barkalow K., Azim A., Italiano J. (1999) The elegant platelet: signals controlling actin assembly. Thromb Haemost 82:392–8PubMedGoogle Scholar
  22. 22.
    Hartwig J.H. (1992) Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol 118:1421–42CrossRefPubMedGoogle Scholar
  23. 23.
    Shattil S.J. (1999) Signaling through platelet integrin alpha IIb beta 3: inside-out, outside-in, and sideways. Thromb Haemost 82:318–25PubMedGoogle Scholar
  24. 24.
    Jung S.M., Moroi M. (2000) Activation of the platelet collagen receptor integrin alpha(2)beta(1): its mechanism and participation in the physiological functions of platelets. Trends Cardiovasc Med 10:285–92PubMedCrossRefGoogle Scholar
  25. 25.
    Suzuki-Inoue K., Yatomi Y., Asazuma N., Kainoh M., Tanaka T., Satoh K., Ozaki Y. (2001) Rac, a small guanosine triphosphate-binding protein, and p21-activated kinase are activated during platelet spreading on collagen-coated surfaces: roles of integrin alpha(2)beta(1). Blood 98:3708–16CrossRefPubMedGoogle Scholar
  26. 26.
    Inoue O., Suzuki-Inoue K., Dean W.L., Frampton J., Watson S.P. (2003) Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCgamma2. J Cell Biol 160:769–80PubMedCrossRefGoogle Scholar
  27. 27.
    Ill C.R., Engvall E., Ruoslahti E. (1984) Adhesion of platelets to laminin in the absence of activation. J Cell Biol 99:2140–5CrossRefPubMedGoogle Scholar
  28. 28.
    Chang H.H., Hu S.T., Huang T.F., Chen S.H., Lee Y.H., Lo S.J. (1993) Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun 190:242–9CrossRefPubMedGoogle Scholar
  29. 29.
    Chang H.H., Chang C.P., Chang J.C., Dung S.Z., Lo S.J. (1997) Application of Recombinant Rhodostomin in Studying Cell Adhesion. J Biomed Sci 4:235–243CrossRefPubMedGoogle Scholar
  30. 30.
    Chang H.H., Lo S.J. (1998) Full-spreading platelets induced by the recombinant rhodostomin are via binding to integrins and correlated with FAK phosphorylation. Toxicon 36:1087–99CrossRefPubMedGoogle Scholar
  31. 31.
    Chang H.H., Lin C.H., Lo S.J. (1999) Recombinant rhodostomin substrates induce transformation and active calcium oscillation in human platelets. Exp Cell Res 250:387–400CrossRefPubMedGoogle Scholar
  32. 32.
    Lo S.J., Tchen T.T., Taylor J.D. (1980) Hormone-induced filopodium formation and movement of pigment, carotenoid droplets, into newly formed filopodia. Cell Tissue Res 210:371–82CrossRefPubMedGoogle Scholar
  33. 33.
    Zeng L., Sachdev P., Yan L., Chan J.L., Trenkle T., McClelland M., Welsh J., Wang L.H. (2000) Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol Cell Biol 20:9212–24CrossRefPubMedGoogle Scholar
  34. 34.
    Chang C.P., Chang J.C., Chang H.H., Tsai W.J., Lo S.J. (2001) Positional importance of Pro53 adjacent to the Arg49-Gly50-Asp51 sequence of rhodostomin in binding to integrin alphaIIbbeta3. Biochem J 357:57–64CrossRefPubMedGoogle Scholar
  35. 35.
    Loike J.D., Silverstein R., Cao L., Solomon L., Weitz J., Haber E., Matsueda G.R., Bernatowicz M.S., Silverstein S.C. (1993) Activated platelets form protected zones of adhesion on fibrinogen and fibronectin-coated surfaces. J Cell Biol 121:945–55CrossRefPubMedGoogle Scholar
  36. 36.
    Li Z., Kim E.S., Bearer E.L. (2002) Arp2/3 complex is required for actin polymerization during platelet shape change. Blood 99:4466–74CrossRefPubMedGoogle Scholar
  37. 37.
    Vignjevic D., Yarar D., Welch M.D., Peloquin J., Svitkina T., Borisy G.G. (2003) Formation of filopodia-like bundles in vitro from a dendritic network. J Cell Biol 160:951–62CrossRefPubMedGoogle Scholar
  38. 38.
    Hall A. (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–14CrossRefPubMedGoogle Scholar
  39. 39.
    Bishop A.L., Hall A. (2000) Rho GTPases and their effector proteins. Biochem J 348:241–55CrossRefPubMedGoogle Scholar
  40. 40.
    Mercurio A.M. (1995) Laminin receptors: achieving specificity through cooperation. Trends Cell Biol 5:419–23CrossRefPubMedGoogle Scholar
  41. 41.
    Gonzalez A.M., Gonzales M., Herron G.S., Nagavarapu U., Hopkinson S.B., Tsuruta D., Jones J.C. (2002) Complex interactions between the laminin alpha 4 subunit and integrins regulate endothelial cell behavior in vitro and angiogenesis in vivo. Proc Natl Acad Sci U S A 99:16075–80CrossRefPubMedGoogle Scholar
  42. 42.
    Colognato H., Ramachandrappa S., Olsen I.M., ffrench-Constant C. (2004) Integrins direct Src family kinases to regulate distinct phases of oligodendrocyte development. J Cell Biol 167:365–75CrossRefPubMedGoogle Scholar
  43. 43.
    Georas S.N., McIntyre B.W., Ebisawa M., Bednarczyk J.L., Sterbinsky S.A., Schleimer R.P., Bochner B.S. (1993) Expression of a functional laminin receptor (alpha 6 beta 1, very late activation antigen-6) on human eosinophils. Blood 82:2872–9PubMedGoogle Scholar
  44. 44.
    Rieu P., Lesavre P., Halbwachs-Mecarelli L. (1993) Evidence for integrins other than beta 2 on polymorphonuclear neutrophils: expression of alpha 6 beta 1 heterodimer. J Leukoc Biol 53:576–82PubMedGoogle Scholar
  45. 45.
    Fujiwara H., Kikkawa Y., Sanzen N., Sekiguchi K. (2001) Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through alpha3beta1 and alpha6beta1 integrins. J Biol Chem 276:17550–8CrossRefPubMedGoogle Scholar
  46. 46.
    Armulik A., Velling T., Johansson S. (2004) The integrin beta1 subunit transmembrane domain regulates phosphatidylinositol 3-kinase-dependent tyrosine phosphorylation of Crk-associated substrate. Mol Biol Cell 15:2558–67CrossRefPubMedGoogle Scholar
  47. 47.
    Maxwell M.J., Yuan Y., Anderson K.E., Hibbs M.L., Salem H.H., Jackson S.P. (2004) SHIP1 and Lyn Kinase Negatively Regulate Integrin alpha IIb beta 3 signaling in platelets. J Biol Chem 279:32196–204CrossRefPubMedGoogle Scholar
  48. 48.
    DeMali K.A., Wennerberg K., Burridge K. (2003) Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol 15:572–82CrossRefPubMedGoogle Scholar
  49. 49.
    Weiner O.D., Neilsen P.O., Prestwich G.D., Kirschner M.W., Cantley L.C., Bourne H.R. (2002) A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 4:509–13CrossRefPubMedGoogle Scholar
  50. 50.
    Srinivasan S., Wang F., Glavas S., Ott A., Hofmann F., Aktories K., Kalman D., Bourne H.R. (2003) Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 160:375–85CrossRefPubMedGoogle Scholar
  51. 51.
    Miao H., Li S., Hu Y.L., Yuan S., Zhao Y., Chen B.P., Puzon-McLaughlin W., Tarui T., Shyy J.Y., Takada Y., Usami S., Chien S. (2002) Differential regulation of Rho GTPases by beta1 and beta3 integrins: the role of an extracellular domain of integrin in intracellular signaling. J Cell Sci 115:2199–206PubMedGoogle Scholar
  52. 52.
    Danen E.H., Sonneveld P., Brakebusch C., Fassler R., Sonnenberg A. (2002) The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J Cell Biol 159:1071–86CrossRefPubMedGoogle Scholar
  53. 53.
    Hindriks G., Ijsseldijk M.J., Sonnenberg A., Sixma J.J., de Groot P.G. (1992) Platelet adhesion to laminin: role of Ca2+ and Mg2+ ions, shear rate, and platelet membrane glycoproteins. Blood 79:928–35PubMedGoogle Scholar
  54. 54.
    Sun D.S., Lo S.J., Lin C.H., Yu M.S., Huang C.Y., Chen Y.F., Chang H.H. (2005) Calcium oscillation and phosphatidylinositol 3-kinase positively-regulate integrin αIIbβ3-mediated outside-in signaling. J Biomed Sci 12:321–333CrossRefPubMedGoogle Scholar
  55. 55.
    Beitz L.O., Fruman D.A., Kurosaki T., Cantley L.C., Scharenberg A.M. (1999) SYK is upstream of phosphoinositide 3-kinase in B cell receptor signaling. J Biol Chem 274:32662–6CrossRefPubMedGoogle Scholar
  56. 56.
    Arndt P.G., Suzuki N., Avdi N.J., Malcolm K.C., Worthen G.S. (2004) Lipopolysaccharide-induced c-Jun NH2-terminal kinase activation in human neutrophils: role of phosphatidylinositol 3-Kinase and Syk-mediated pathways. J Biol Chem. 279:10883–10891CrossRefPubMedGoogle Scholar

Copyright information

© National Science Council Taipei 2005

Authors and Affiliations

  • Jui-Chin Chang
    • 1
  • Hsin-Hou Chang
    • 2
  • Chien-Ting Lin
    • 1
  • Szecheng J. Lo
    • 1
    • 3
  1. 1.Institute of Microbiology and ImmunologyNational Yang-Ming UniversityTaipeiTaiwan
  2. 2.Graduate Institute of Molecular and Cellular BiologyTzu-Chi UniversityHualinTaiwan
  3. 3.Department of Life ScienceChang Gung UniversityTaoyuanTaiwan

Personalised recommendations